Alcohols and Phenols

By Idrees AL-Mashkoor

Alcohols and Phenols

Assist proff: idries Muhson al mashkor

- Alcohols contain an OH group connected to a saturated C (sp³)
- They are important solvents and synthesis intermediates
- Phenols contain an OH group connected to a carbon in a benzene ring
- Methanol, CH₃OH, called methyl alcohol, is a common solvent, a fuel additive, produced in large quantities
- Ethanol, CH₃CH₂OH, called ethyl alcohol, is a solvent, fuel, beverage
- Phenol, C₆H₅OH ("phenyl alcohol") has diverse uses it gives its name to the general class of compounds
- OH groups bonded to vinylic sp²-hybridized carbons are called enols

- To begin to study oxygen-containing functional groups
- These groups lie at the heart of biological chemistry

CO₂CH₃

OH OH

Phenol (also known as carbolic acid) Methyl salicylate

Urushiols (R = different C₁₅ alkyl and alkenyl chains)

Naming Alcohols and Phenols

- General classifications of alcohols based on substitution on C to which OH is attached
- Methyl (C has 3 H's), Primary (1°) (C has two H's, one R), secondary (2°) (C has one H, two R's), tertiary (3°) (C has no H, 3 R's)

A primary (1°) alcohol

A secondary (2°) alcohol

A tertiary (3°) alcohol

IUPAC rules for Naming Alcohol

- Select the longest carbon chain containing the hydroxyl group, and derive the parent name by replacing the -e ending of the corresponding alkane with -ol
- Number the chain from the end nearer the hydroxyl group
- Number substituents according to position on chain, listing the substituents in alphabetical order

CHCHCH₃ 31 2 1 CHCHCH₃ OH

2-Methyl-2-pentanol (New: 2-Methylpentan-2-ol) cis-1,4-Cyclohexanediol (New: cis-Cyclohexane-1,4-diol) 3-Phenyl-2-butanol (New: 3-Phenylbutan-2-ol)

Naming Phenol

- Use "phenol" (the French name for benzene) as the parent hydrocarbon name, not benzene
- Name substituents on aromatic ring by their position from OH

Properties of Alcohols and Phenols

- The structure around O of the alcohol or phenol is similar to that in water, sp³ hybridized.
- Alcohols and phenols have much higher boiling points than similar alkanes and alkyl halides.
- A positively polarized —OH hydrogen atom from one molecule is attracted to a lone pair of electrons on a negatively polarized oxygen atom of another molecule.
- This produces a force that holds the two molecules together
- These intermolecular attractions are present in solution but not in the gas phase, thus elevating the boiling point of the solution.

Properties of Alcohols and Phenols: Acidity and Basicity

- Weakly basic and weakly acidic
- Alcohols are weak Brønsted bases
- Protonated by strong acids to yield oxonium ions, ROH₂⁺

An alcohol

An oxonium ion

$$\left[\text{ or ArOH } + \text{ HX } \stackrel{+}{\Longleftrightarrow} \text{ ArOH}_2 \text{ X}^- \right]$$

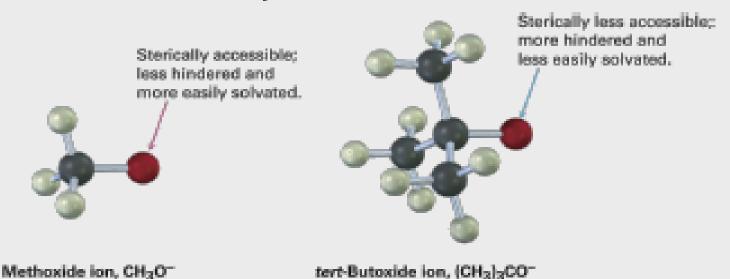
Alcohols and Phenols are Weak Brønsted Acids

- Can transfer a proton to water to a very small extent
- Produces H₃O⁺ and an alkoxide ion, RO⁻, or a phenoxide ion, ArO⁻

$$R - \overset{\mathsf{H}}{\bigcirc} + \overset{\mathsf{H}}{\mathsf{H}} \overset{\mathsf{G}}{\longrightarrow} + \overset{\mathsf{H}}{\mathsf{H}} \overset{\mathsf{G}}{\longrightarrow} + \overset{\mathsf{H}}{\mathsf{H}} \overset{\mathsf{G}}{\longrightarrow} \overset{\mathsf{H}}{\mathsf{H}}$$

An alcohol

An alkoxide ion


or
$$Y + H_2\ddot{O}$$
: $A \text{ phenoxide ion}$

A phenoxide ion

Relative Acidities of Alcohols

- Simple alcohols are about as acidic as water
- Alkyl groups make an alcohol a weaker acid
- The more easily the alkoxide ion is solvated by water the more its formation is energetically favored
- Steric effects are important

 $(pK_n = 15.54)$

 $(pK_p = 18.00)$

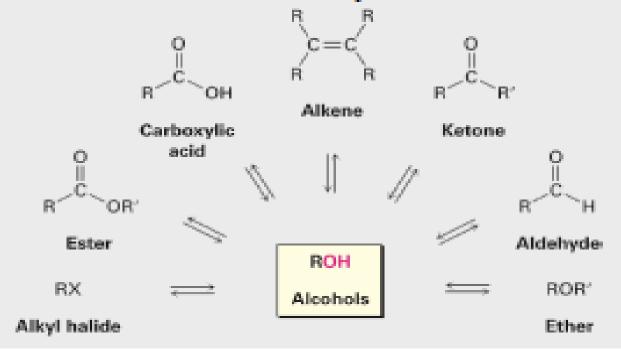
Generating Alkoxides from Alcohols

 Alcohols are weak acids – requires a strong base to form an alkoxide such as NaH, sodium amide NaNH₂, and Grignard reagents (RMgX)

Alkoxides are bases used as reagents in organic chemistry

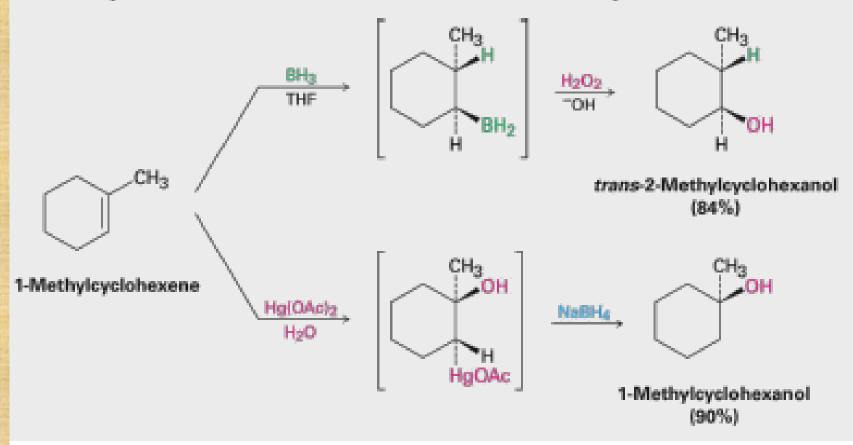
2 H₂C CH₃ + 2 K --- 2 H₂C CH₃ + H₂ sext-Burtyl algorholi Potassium tevt-butaxide (potassium 2-methyl-(2-methyl-2-propanol) 2-propanolate) CHyOH + NaH --- CHyO" Na* + Ha Mothemol Sedium methooide Escadium methanolate) CHyCHyOH + Nakkhi --- CHyCHyO" Na⁴ + NH₃. Ethernol. Sodium ethoxide (nodium ethanolate) **Cyclohexanol** Bromomagnesium eweloherramoliste

Phenol Acidity

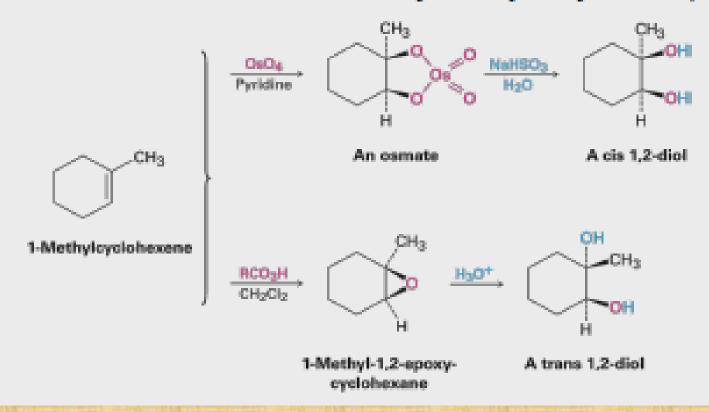

- Phenols (pK_a ~10) are much more acidic than alcohols (pK_a ~ 16) because of resonance stabilization of the phenoxide ion
- Phenols react with NaOH solutions (but alcohols do not), forming salts that are soluble in dilute aqueous solution
- A phenolic component can be separated from an organic solution by extraction into basic aqueous solution and is isolated after acid is added to the solution

Phenol

Sodium phenoxide (sodium phenolate)


Preparation of Alcohols:

- Alcohols are derived from many types of compounds
- The alcohol hydroxyl can be converted to many other functional groups
- This makes alcohols useful in synthesis


Review: Preparation of Alcohols by Regiospecific Hydration of Alkenes

- Hydroboration/oxidation: syn, anti-Markovnikov hydration
- Oxymercuration/reduction: Markovnikov hydration

1,2-Diols

- Review: Cis-1,2-diols from hydroxylation of an alkene with OsO₄ followed by reduction with NaHSO₃
- Trans-1,2-diols from acid-catalyzed hydrolysis of epoxides

17.4 Alcohols from Carbonyl Compounds: Reduction

- Reduction of a carbonyl compound in general gives an alcohol
- Note that organic reduction reactions add the equivalent of H₂ to a molecule

where [H] is a reducing agent

A carbonyl compound

An alcohol

Reduction of Aldehydes and Ketones

- Aldehydes gives primary alcohols
- Ketones gives secondary alcohols

An aldehyde

A primary alcohol

A ketone

A secondary alcohol

Reduction Reagent: Sodium Borohydride

- NaBH₄ is not sensitive to moisture and it does not reduce other common functional groups
- Lithium aluminum hydride (LiAlH₄) is more powerful, less specific, and very reactive with water
- Both add the equivalent of "H-"

Aldehyde reduction

Ketone reduction

te 1º alceholi

Dicyclohexyl ketone

Dicyclohexylmethanol (88%)i (a 2" alcohol)

Mechanism of Reduction

 The reagent adds the equivalent of hydride to the carbon of C=O and polarizes the group as well

$$\begin{array}{c|c} C & & \\ H & & \\ C & & \\ C & & \\ C & & \\ C & & \\ H & & \\ C & &$$

A carbonyl compound An alkoxide ion intermediate An alcohol

Reduction of Carboxylic Acids and Esters

- Carboxylic acids and esters are reduced to give primary alcohols
- LiAlH₄ is used because NaBH₄ is not effective

Carboxylic acid reduction

Ester reduction

17.5 Alcohols from Carbonyl Compounds: Grignard Reagents

- Alkyl, aryl, and vinylic halides react with magnesium in ether or tetrahydrofuran to generate Grignard reagents, RMgX
- Grignard reagents react with carbonyl compounds to yield alcohols

Reactions of Grignard Reagents with Carbonyl Compounds

Formaldehyde reaction

Cyclohexylmagnesium bromide Formaldehyde

Cyclohexylmethanol (65%) (a 1° alcohol)

Aldehyde reaction

Phenylmagnesium bromide 3-Mothylbutanal

3-Methyl-1-phenyl-1-butanol (73%) (a 2° alcohol)

Ketone reaction

Ethylmagnesium bromide Cyclohexanone

1-Ethylcyclohexanol (89%) (a 3° alcohol)

Reactions of Esters and Grignard Reagents

- Yields tertiary alcohols in which two of the carbon substituents come from the Grignard reagent
- Grignard reagents do not add to carboxylic acids they undergo an acid-base reaction, generating the hydrocarbon of the Grignard reagent

Reaction of Alcohols

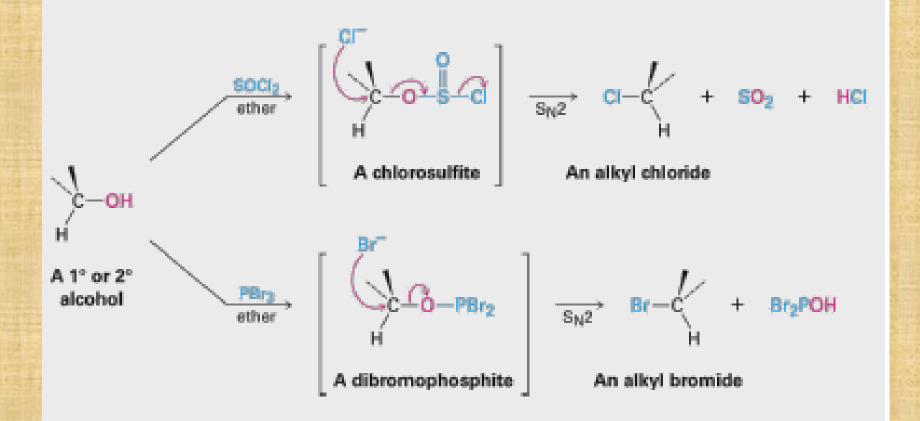
Types of Alcohol Reactions

R—ОН	dehydration →	alkenes	R—ОН	esterification	R-O-C-R'
R—ОН	oxidation →	ketones, aldehydes, acids	R—OH	tosylation	R—OTs
R—OH	substitution	R—X halides			tosylate esters (good leaving group)
R—ОН	reduction	R—H alkanes	R—ОН	$\xrightarrow{(1) \text{ form alkoxide}}$ $(2) \text{ R'X}$	R—O—R'

Reaction of Alcohols

- Conversion of alcohols into alkyl halides:
- 3° alcohols react with HCl or HBr by S_N1 through carbocation intermediate
- 1° and 2° alcohols converted into halides by treatment with SOCl₂ or PBr₃ via S_N2 mechanism

A 3° alcohol

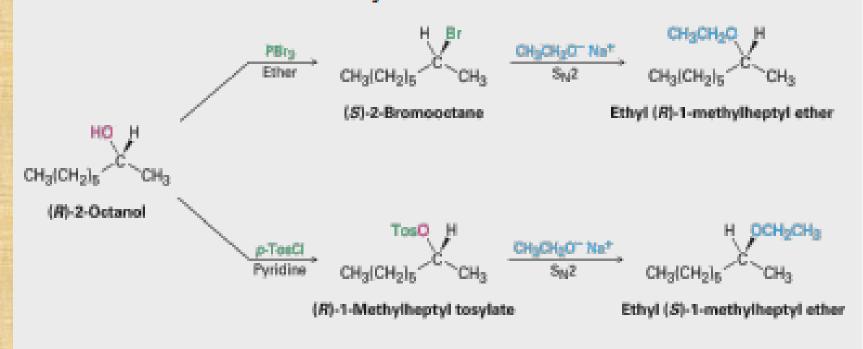

A carbocation An alkyl chloride or bromide

Reaction of Alcohols

Reactions with HCI

- Chloride is a weaker nucleophile than bromide.
- ZnCl₂ is added to promote the reactions
 - it bonds more strongly than proton.
- The reagent composed of HCl and ZnCl₂ = Lucas reagent.
- Lucas test: ZnCl₂ in conc. HCl
 - 1° alcohols react slowly or not at all.
 - 2° alcohols react in 1-5 minutes.
 - 3° alcohols react in less than 1 minute.

Reactions of 1° and 2° alcohols



Conversion of Alcohols into Tosylates

- Reaction with p-toluenesulfonyl chloride (tosyl chloride, p-TosCl) in pyridine yields alkyl tosylates, ROTos
- Formation of the tosylate does not involve the C–O bond so configuration at a chirality center is maintained
- Alkyl tosylates react like alkyl halides

Stereochemical Uses of Tosylates

- The S_N2 reaction of an alcohol via an alkyl halide proceeds with two inversions, giving product with same arrangement as starting alcohol
- The S_N2 reaction of an alcohol via a tosylate, produces inversion at the chirality center

Dehydration of Alcohols to Yield Alkenes

- The general reaction: forming an alkene from an alcohol through loss of O-H and H (hence dehydration) of the neighboring C-H to give π bond
- Specific reagents are needed

A dehydration reaction

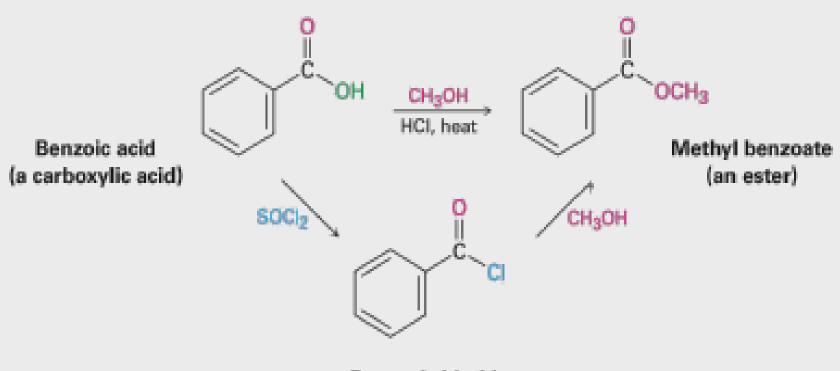
$$c-c$$
 \rightarrow $c=c$ + $H^{5}O$

Acid- Catalyzed Dehydration

- Tertiary alcohols are readily dehydrated with acid
- Secondary alcohols require severe conditions (75% H₂SO₄, 100°C) - sensitive molecules do not survive
- Primary alcohols require very harsh conditions impractical
- Reactivity is the result of the nature of the carbocation intermediate

2-Methyl-2-butanol

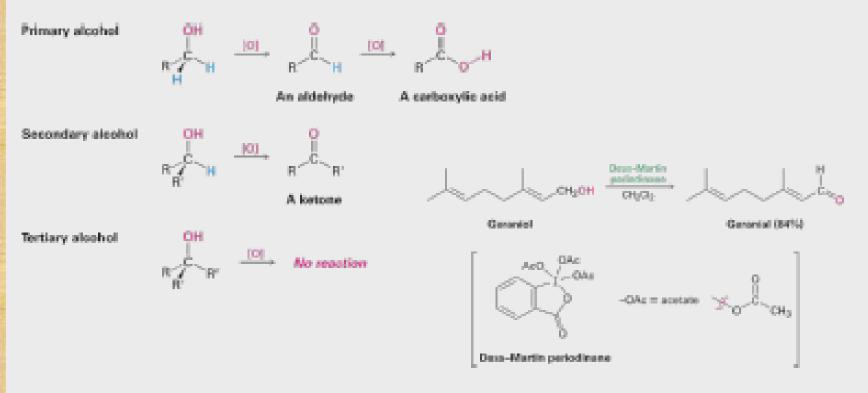
2-Methyl-2-butene (trisubstituted) 2-Methyl-1-butene (disubstituted)


Major product

Minor product

Dehydration with POCI₃

- Phosphorus oxychloride in the amine solvent pyridine can lead to dehydration of secondary and tertiary alcohols at low temperatures
- An E2 reaction via an intermediate ester of POCI₂ (see Figure 17.7)


Incorporation of Alcohols into Esters

Benzoyl chloride (a carboxylic acid chloride)

Oxidation of Alcohols

 Can be accomplished by inorganic reagents, such as KMnO₄, CrO₃, and Na₂Cr₂O₇ or by more selective, expensive reagents

Oxidation of Primary Alcohols

- To aldehyde: pyridinium chlorochromate (PCC, C₅H₈NCrO₃Cl) in dichloromethane
- Other reagents produce carboxylic acids

Oxidation of Secondary Alcohols

- Effective with inexpensive reagents such as Na₂Cr₂O₇ in acetic acid
- PCC is used for sensitive alcohols at lower temperatures

Testosterone (male sex hormone) 4-Androstene-3,17-dione (82%)

Reaction of alcohols

Nitrate Esters

Alcohols + nitric acid.

Glyceryl nitrate results from the reaction of glycerol (1,2,3-propanetriol) with three molecules of nitric acid.

Reaction of al cohols

Phosphate Esters

Alcohol + phosphoric acid.

$$\begin{array}{c} O \\ HO + P - OH \\ OH \\ OH \\ \end{array} \xrightarrow{CH_3O - H} \begin{array}{c} O \\ \parallel \\ CH_3 - O - P - OH \\ + & H_2O \\ \end{array} \xrightarrow{CH_3OH} \begin{array}{c} O \\ \parallel \\ CH_3 - O - P - OH \\ + & H_2O \\ \end{array} \xrightarrow{CH_3OH} \begin{array}{c} O \\ \parallel \\ + & H_2O \\ \end{array} \xrightarrow{CH_3OH} - O - OH \\ + & H_2O \\ \end{array} \xrightarrow{CH_3OH} \xrightarrow{CH_3OH} CH_3 - O - OH \\ \xrightarrow{CH_3OH} CH_3 - OH \\ \xrightarrow{CH_3OH} CH$$

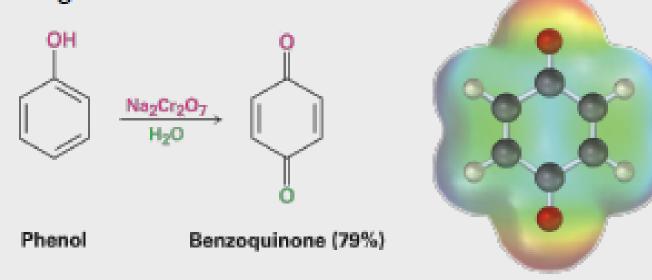
$$CH_3OH$$
 $CH_3-O-P-O-CH_3$
 $+ H_2O O-CH_3$

trimethyl phosphate

Reaction of alcohol

Pinacol Rearrangement

- vicinal diol converts to the ketone (pinacolone) under acidic conditions and heat.
- Formally an acid-catalyzed dehydration.


Phenols and Their Uses

- Industrial process from readily available cumene
- Forms cumene hydroperoxide with oxygen at high temperature
- Converted into phenol and acetone by acid

Reactions of Phenols

- The hydroxyl group is a strongly activating, making phenols substrates for electrophilic halogenation, nitration, sulfonation, and Friedel–Crafts reactions
- Reaction of a phenol with strong oxidizing agents yields a quinone

 Fremy's salt [(KSO₃)₂NO] works under mild conditions through a radical mechanism

Quinones in Nature

 Ubiquinones mediate electron-transfer processes involved in energy production through their redox reactions

Step 2

CH₃O
$$\downarrow$$
 CH₃O \downarrow CH₃O \downarrow

