Antifungal Activities of Alcoholic and Aqeuous Extracts of punica granatum against Some Non-Dermatophytic Fungi

Lecturer: Faten Naeem Abbas* MSC microbiology

ABSTRACT:

A clinical and mycological study of superficial mycosis was conducted on 23 cases (7 males and 16 females), and collected from patients (5-50) years old. Direct microscopy by KOH (potassium hydroxide) mount and culture was undertaken to isolate the fungal pathogen in each case. Non-dermatophyte molds were isolated from 18 cases (78.26%) and 21 isolates were identified from these cases ; 10 isolates *Candida albicans* (47.61%), 5 isolates *Rhizopus stolonifer* (23.8%), 2 isolates *Penicillium* sp. and 2 isolates *Aspergillus nidulans* (9.5%) respectively, 1 isolate *Alternaria alternata* and1 isolate *Fusarium* sp. (4.7%) respectively . Alcoholic & aqueous extracts of the *punica granatum (Pomegranate)* peels were prepared. The anti-fungal activity of the extracts was evaluated on isolated fungi by means of the agar-well diffusion assay. The Minimum inhibitory concentrations were 10-300 mg/ml against isolated fungi. Their was little difference between the activities of alcoholic extract & aqueous extract. These results suggest the Pomegranate Peels extract which contains active constituents as a promising anti-fungal agent.

*Microbiology Department-College of Medicine -University of Thi-Qar

Introduction:

Phytotherapy is considered as а complementary approach for preventing and treating simple disease, although well grounded in medical tradition, it often lacks proper scientific validation (Cravatto et al., 2010). The fact that some of plants have been used traditionally for centuries and modern scientific studies have shown the existence of good correlation between the traditional or folkloric application of of some these plants further pharmacologically active compounds from plants (Abba et al., 2009; Abalaka et al., 2009; Egharevba & Kunle 2010). One of such plants with wide ethnomedicinal use is Punica granatum, which belongs to the family of Punicaceae, is commonly known as pomegranate, grenade, granats and punica apple (Voravuthikunchai et al., 2005). Punica granatum has been used extensively as a traditional medicine in many countries (Singh et *al.,*2002) for the treatment of dysentery, diarrhea, helminthiasis, acidosis, hemorrhage and respiratory pathologies(Ricci et al., 2006;

Sanchez-Lamar et al., 2007). In addition, P. granatum is reported to have antioxidant (Related et al., 2007; Parmar & Kar, 2008) antiatherosclerotic (Aviram et al., 2004; Parmar & Kar,2007), antibacterial (Braga et al., 2005; Naz et al., 2007), antiviral (Zhang et al., 1995) and antifungal (Saad al.,2010) et properties. The constituents of P. granatum are very well known for their therapeutic properties (Lansky & Newman, 2007) . Superficial mycosis refers to fungal infections of the outer layer of skin and its appendages like hair and nails (Chander, 2009) . They

are among the most prevalent of human infectious diseases(Collee *et al.*, 1996). Over the last decades, an increasing number of non dermatophytic filamentous fungi have been recognized as agents of skin and nail infections in humans, producing lesions clinically similar to those caused by dermatophytes. Though several reports on dermatophytosis are available from different parts of the country, there are hardly any reports on non – dermatophytic fungi and yeast like fungi as causative agents of superficial mycoses along with dermatophytes (Aggarwal et al.,2002) The present study was undertaken with a view to find out the clinical pattern of non - dermatophytic fungi (superficial mycosis) and most common fungal pathogens are capable of causing superficial mycosis. Dermatologists are frequently faced with treatment failure, and microbiologists are frequently faced with failure to isolate dermatophytes in culture, this may be due to a possible infection by nondermatophyte molds. Difficulties arising during chemotherapy of this fungi necessitate novel chemotherapeutic strategies. Therefore, the aims of this study are to investigate anti-fungal properties of water and ethanol extracts of Punica granatum L.Peels for treatment of several skin infections and inflammatory disorders using various in vitro models .

Materials and Methods: Collection of plant materials

The *Punica granatum*. Peals were obtained from the local market. Washed, cleaned and dried at room temperature or under shade for nine days and then crushed into coarse powder using a grinder.

Preparation of plant extract

The powder was used for the ethanol and water, 20 g of powder was added to a thimble and then placed in a Soxhlet extractor. Heat was applied to a round bottom flask which was placed at the base of the Soxhlet extractor. The process was continued for 18 hours. The extracts were then placed on rotary evaporators at 67 and 92 °C respectively to remove the ethanol and water. A sample of 500 mg of the dried extract was dissolved in 1 ml of water, and make serial 5 dilutions, to give extract concentrations (300, 100, 50, 30, and 10 mg/ml). These were used as the extracts in the microbial test (Barriada-Pereira, 2003).

Selection of Fungal Strains

Clinical specimens like skin scrapping, infected hair (by hair plucking)

and clipped nails were collected in small paper envelopes after cleaning the area with 70% alcohol. All specimens were subjected to direct microscopy for fungal elements in 10% KOH (20% for nail) and were cultured in Sabouraud's Dextrose Agar (SDA) with and without antibiotics . The culture studies and identification were done by standard methods (Koneman et al.,1997; Tony,2004 ; Padhye & Weitzman, 2005). These organisms were chosen because they are commonly isolated pathogens from hospitalized patient with skin infections.

Media used

Twenty-three clinical isolates were obtained from AL-Hussain Teaching hospital. Sabouraud Dextrose Agar medium (SDA) was prepared from 10 g. of Neopepton with 10 g. Glucose and 20g. Agar, then added the distilled water to complete to 1 L.

Preparation of MacFrland Standard Solution

Solution A: 1.175gm of barium chloride BaCl2.2H2O in 100ml of distilled water.

Solution B: prepared by the addition of 1ml of concentrated H2SO4 to99ml distilled water.0.5ml of solution A was added to 99.5ml of solution B and the tube was compared with the fungal suspension to give number of cell approximatively 10⁸x1.5 fungi/ml (Jawetz & Adelbergs,2001).

Preparation of Fungal Suspension

A sterile wire loop was used to place the test fungi into a test tube with distilled water over an open flame. The concentration of the inoculum was 0.5 McFarland's standards (ca. 10⁸ CFU/ml) (Baker *et al,* 1983).

Well Diffusion Assay

Antifungal susceptibility testing was done using the well diffusion method to detect the presence of antifungal activities of the plant samples (Perez *et al.,* 1990). A sterile swab was used to evenly distribute fungal culture over the appropriate medium. The plates were allowed to dry for 15 minutes before use in the test. Wells were then created and a pipette was used to place 100 μ l of the crude extract of *Punica granatum* into each well. The same extract was used on each plate; with a total of three plates used for each extract including two wells for the positive and negative controls.. The plates were incubated at 26°C for 24 hours after which they were examined for inhibition zones. A ruler was used to measure the inhibition zones. Three replicates were done for each concentration of the different extracts to ensure reliability.

Detection of *Punica granatum* Peels Constituants

Phytochemical Tests:

1- Tannins Test: A modified methods stated in (Trease & Evans,1996) was used to be presented of tannins on the extracts, A few drops of Ferric chloride reagent were added for 3 ml of extract. A blue-black color refereed to the present of tannins.

2- Alkaloids Test:A few drops of Marqus reagent (prepared from mixing 0.5 ml of Formaldehyde with 5 ml of concentration H_2SO_4), added to the 5 ml of extract. Turbidity refereed to the present of alkaloids (Harborne, 1984).

3-Saponins Test: 3 ml of extract was added to the 2 ml of Ferric chloride, a white residue to be formed as

evidence to the present of Saponins (Al-Khazaragi, 1991).

4- *Phenols Test*: many drops of (1%) Ferric chloride Reagent was added to 1 ml. plant extract, blue-green color refereed to the present of phenols(Ribereau – Gayon, 1972).

5-Flavonoids Test: Flavonoids test were implement in conformity with (Al-Khazaragi, 1991) 2 ml of extract mix with Alcoholic KOH (0.5 ml.), a yellow color as proofed to the present of Flavonoids.

6-Glygosides Test: 0.5g of dried extract was dissolved in 2 ml of glacial acetic acid containing one drop of Ferric chloride solution, then under laid with 1 ml of concentration H_2SO_4 .A brown ring indicated the present of Glycosides (Oloyede, 2005).

Minimum Inhibitory Concentrations(MICs)

The Minimum inhibitory concentrations (MICs) were determined by agar well diffusion $10^8 x 1.5$ method. Inoculums of fungi/ml were seeded on agar, Different concentrations of extracts (10mg/ml-300mg/ml) were added in each well in Sabouraud agar and incubated at 26C⁰. These results were compared with different

concentrations of Nystatin and Flucomin. The lowest concentration preventing growth (MIC) was estimated after 18 - 24 hours. The activity of different concentrations of Punica granatum. L . extracts were determined against Candida albicans, *Rhizopus stolonifer , Aspergillus* nidulans, Penicillium sp., Alternaria sp. and *Fusarium* sp.

Statistical analysis:

Results were statistically analyzed using Duncan Multiple Rang Test, and least significance difference to compared between the means.

Results:

Clinical data (Table 1):

Patients	n=23		
Age	5-50		
Sex	7 males (30.43%)		
	16 females (69.56%)		
Primary complaint	4 Thorax (17.39%)		
	2 Back (8.69%)		
	7 Finger (30.43%)		
	4 Nail (17.39%)		
	4 Hair (17.39%)		
	2 Face (8.69%)		

Table 1: Summary of clinical data of patients with skin infection

Direct microscopy and culture on Sabouraud's dextrose agar :

Direct microscopic examination of the 23 specimens was done using 10- 20% KOH. Sixteen specimens (69.56 %) were KOH positive and 7 specimens (30.43 %)

Thi-Qar Medical Journal (TQMJ) : Vol (7) No (1) : 2013 (102-119) 108

were negative. Eighteen specimens (78.26%) were positive for growth and 5 specimens (21.73%) were negative, table (2)

5					
Case	КОН	Culture on	Case	КОН	Culture on
no.		Sabouraud agar	no.		Sabouraud agar
1	÷	Candida albicans	13	-	N.G
2	+	Rhizopus stolonifer	14	-	N.G
3	+	Penicillium sp.	15	+	Fusarium sp.
4	+	Rhizopus stolonifer	16	+	Alternaria sp.
5	+	Aspergillus nidulans	17	+	Candida albicans
6	+	Rhizopus stolonifer	18	-	N.G
7	+	Aspergillus nidulans	19	+	Candida albicans
8	+	Candida albicans	20	-	N.G
9	+	Candida albicans	21	-	Mix(Rhizopus stolonifer - Candida albicans .)
10	+	Candida albicans	22	-	Mix (Rhizopus stolonifer - Candida albicans - Penicillium sp.)
11	+	Candida albicans	23	-	N.G
12	+	Candida albicans			

Table 2: Results of direct microscopy and culture on Sabouraud's dextrose agar

Fungal culture on SDA:

Non-dermatophyte molds were isolated from 18 samples (78.26%) and 21 isolates were identified from these samples shown in table (3); 10 isolates *Candida albicans* in 10 patients (47.61%), 5 isolates *Rhizopus stolonifer* in 5 patients (23.8%), 2 isolates *Penicillium* sp. and 2 isolates *Aspergillus nidulans* in 2 patients (9.5%) respectively, 1 isolate *Alternaria alternata* and 1 isolate *Fusarium* sp. in 1 patient (4.7%) respectively

	Fungal culture	No. Isolates	%	
1	Candida albicans	10	47.61	
2	Rhizobus stolonifer	5	23.8	
3	Aspergillus nidulans	2	9.5	
4	Penicillium sp.	2	9.5	
5	Fusarium sp.	1	4.7	
6	Alternaria sp.	1	4.7	
	Total	21	100%	

Table 3: Results of fungal culture on SDA

Antifungal activities :

The antifungal screening of ethanol and aqueous extracts of *Punica granatum* showed good results, ethanol extract was most effective against all isolated fungi (31.18 mm). While, the aqueous extract was relatively found to be less effective (18.81mm). Negative control (well containing only solvent) showed no zone against any fungi. The positive controls (Flucomin and Nystatin) produce zone of inhibition against the tested fungi (table 4).

Table 4: Effect of Aqueous and ethanol Pomegranate Extracts and antifungal drugson the Fungal Cultures

	Aqueous extract		Control		
Fungi		Ethanol extract	Antifungal Flucomin (7 mg/ml)	Antifungal Nystatin (3mg/ml)	
Candida albicans	25	27	6*	30	
Rhizobus stolonifer	25	35	12	30.6	
Aspergillus nidulans	29.6	30	19	24.6	
Penicillium sp.	6	23.6	6	35	
<i>Fusarium</i> sp.	6	34.5	16	22	
Alternaria sp.	33.3	37	6	14.3	
Average	20.81	31.18	10.83	26.08	

*6:Diameter of well

Phytochemical Compounds:

Pomegranate peels extract was screened for the presence of biologically active compounds like as Tannins, Alkaloids, Phenols, Flavones, Glycosides and Saponins ,table (5).

Table 5: Phytochemical Compounds in ethanol extract of Punica granatum

Constituents	Result
Tannins	+
Alkaloides	+
Phenoles	+
Flavones	+
Glycosides	+
Saponines	+

Antifungal Activities of Alcoholic and Aqeuous Extracts of punica granatum against Some Non-Dermatophytic Fungi 111

Minimum Inhibitory Concentrations (MICs)

Phytochemical Compounds in ethanol extract of *Punica granatum* revealed a high activity for different concentrations *in vitro* against the species of non-dermatophytic fungi included in this study, Statistical analysis showed high significant different between the concentrations of *Punica granatum* expect 50 mg. concentration showed no significant different, table (6).

Table 6 : Diameters of Inhibition Zone (mm) of Fungi Under test (Ethanol extract of
Punica granatum)

		Average diameters of inhibition zone					
	Type of fungi (mm.) for different concentrations o						
		Punica granatum (mg.)					
		300	100	50	30	10	
1	Candida albicans	24	21	17	14	12	
2	Rhizobus stolonifer	22	18	17	17	15	
3	Aspergillus nidulans	27	25	20	20	18	
4	Penicillium sp.	22	21	19	17	11	
5	<i>Fusarium</i> sp.	21.5	20	19	17.5	14	
6	Alternaria sp.	25.6	23.6	15.6	11.3	9.3	

P≤0.001

Discussion:

Non-dermatophyte molds(NDMs) are not easily identified with routine fungal cultures, and if discovered, they need a much longer duration of therapy with systemic antifungal agents than dermatophytes, which patients do not always receive. Thus, we carried out this study in order to detect the possible prevalence of NDM in patients with abnormal skin . In this study NDM were isholated from 18 treating acace of skin disorders and the common practice of discardin them as contaminant should be avoided and, at the same time, unequivocal evidence of existence has been obtained (Ghannoum et al., 2000; Summerbell et al., 2005; Baran et al., 2006). Candida albicans 10 isolates (47.61%),Rhizopus stolonifer 5 isolates(23.8%),Penicillium sp. And Aspergillus nidulans 2 isolates (9.5%) for each genus, Alternaria sp. and Fusarium sp. 1 isolate(4.7%) for each genus were isolated & identified from the following regions: Thorax (17.39%),2 Back (8.69%).

NDMs should be considered in evealuating and treating abnormal skin. In the recent years, the use of plants with preventive and therapeutic effects contributes to health care needs (Holetz et al.,2002). There are three main reasons to be interested in the treating and healing power of plant extract. First, pharmacological studies have demonstrated that many of plants are known to possess antimicrobial agents; second, people are becoming aware of the side effects associated with the over prescription of traditional antibiotics; third, time to time resistant microorganisms against antibiotics are increasing (Holetz *et al.*,2002; Meléndez *et al.*, 2006; Naz *et al.*,2007) . Among these plants, *punica granate* has an important role in folk

medicine. Pomegranate is known as a rich source of pharmacological properties which have been evaluated due to antiparasitic, antibacterial, antifungal, antiproliferative, apoptotic and anti-cancer effects as well as protection against herpes virus and decrease in atheromatous plaque formation and reduction of systolic blood pressure (Kim *et al.*,2002; Naz *et al.*,2007) . peel extracts were previously reported to be able to inhibit the growth of some

pathogenic fungi, as well as yeasts(Jayaprakasha *et al.*,2006 ; Tayel *et al.*,2009 ; Osorioa *et al.*, 2010 ; Endo *et al.*,2010; Tayel *et al.*,2011). The present study showed that ethanol and aqueous extract was

samples (78.26%), table (2). Hence, yeasts and NDM should always be kept in mind while investigating and 113

effective against some common nondermatophytic fungi such as, Candida albicans Rhizopus stolonifer, . Aspergillus nidulans, penicillium sp. ,Fusarium sp. and Alternaria sp. The inhibition ability was suggested to be attributed to the high levels of polypolyphenols (Gil et al.,2000; Tzulker et al.,2007; Samy & Gopalakrishnakone, 2008). These results were in agreement with the most reports worldwide which detected activity of Punica granatum against fungi such as Vasconcelos et al (2006) showed that Punica granatum may be used as a topical antifungal drug against C. albicans and Siham et al (2007) suggest the Pomegranate Peels extract which contains gallotanic acid as a promising anti-fungal agent. The real mechanism of the antifungal effect of tannins (the major components of Punica granatum extract) may be related to their toxicity, astringent, molecular structure or other ways (Vasconcelos et al.,2006) .Table (4): Shows the results of activity of alcoholic & water extract by well diffusion technique of twenty-one strains comparing with control antifungal drug (Flucomin and

Nystatin), good activity was noted with extracts, Antifungal activeties of ethanolic extract had a very good activity against the species most commonly isolated in clinical samples Effectiveness can be returned to the active compounds owned by the pomegranate (Table 5). These results were in agreement with the studies of Siham et al., 2007. Table (6) shows the following: 10 isolates (47.61%)*Candida albicans* 12-24mm zone of inhibition with different concentrations of extracts and 5 isolates (23.8%) Rhizopus stolonifer 15-22 mm zone , 2 isolates (9.5%) Penicillium sp. 11-22mm and 2 isolates(9.5%) Aspergillus nidulans 18-27mm, 1 isolate (4.7%) Fusarium sp. 14-21.5mm and 1 isolate(4.7%) Alternaria sp. 9.3-25.6mm, these results indicated, excellent activity of alcoholic and water extract on all isolated fungi at different concentration comparing with antifungal drug , this antifungal activity may be related to the presence of hydrolysable tannins and polyphenolics in the pomegranate extract specifically punicalagin and gallagic acid (Vasconcelos et al., 2006;

Reddy et al., 2007). It means that the antimicrobial effect of tannins is related to its toxicity and molecular structure. Tannins may act on the cell wall and across the cell membrane because they can precipitate proteins (Naz et al(2007) demonstrated that gallic acid (a tannic acid) has the highest antibacterial effect against tested sensitive strains even at low concentrations. Hence, the antifungal activity of Punica granatum may be related to polyphenol structures because polyphenols may affect the cell wall, inhibit enzymes by oxidized agents, interact with proteins and disturb co-aggregation of microorganisms (Vasconcelos et al.,2003; Naz et al.,2007).

Conclusion:

Extracts of *Punica granatum* L. bark in this study demonstrated a therapeutic potentials against nondermatophytic fungi with different diameter zone of inhibition. The antifungal activities of the plant extract, possibly due to the secondary metabolites such as tannins, phenolic compounds or saponins that were abundant in this plant. This study paves the way for further attention and research to identify the active compounds responsible for the plant biological activity. Further studies should be undertaken to elucidate the exact mechanism of action by which extracts exert their antifungal effect.

115

References:

- 1- •Abalaka, ME; Olonitola, OS;Onaolapo, JA and Inabo, HI. (2009). Determination of Activity, Time Survival and Pharmacokinetics of Extracts From *Momordica charantia* on Some Bacterial Pathogens. Int. Jor. P. App. Scs., 3(3):6-13
- Aggarwal, A; Arora, U and Khanna S.(2002).Clinical and Mycological Study of Superficial Mycoses in Amritsar. Indian J dermatol; 47(4): 218 – 220.
- Al-Khazaragi, S.M. (1991) .Biopharmacological study of Artemisia herba -alba .MSC.Thesis .Univ .Baghdad .
- Baker, C. N. and Thornsberg, C. H. (1983). Inoculum standardization in antimicrobial susceptibility tests: Evaluation of overnight age culture. J. Chin. Microbiol., 17:140-457.
- Baran, R; Hay, R; Haneke, E and Tosti, A.(2006).Onychomycosis. The current approach to Diagnosis and Therapy. 2nd. Ed. Boca Raton, FL, USA: Taylor & Francis Group;
- Barriada-Pereira, M.;Concha-Graña, E.; González-Castro, M. J.; Muniategui-Lorenzo, S.; López-Mahía, P.; Prada-Rodríguez, D. and Fernández-Fernández, E. (2003). Microwave-assisted extraction versus Soxhlet extraction in the analysis of 21 organochlorine pesticides in plants. Elsevier B.V. J Chromatogr. 1008: 115-122.
- •Chander J. (2009).Superficial Cutaneous Mycosis. In: Textbook of Medical Mycology, 2nd edition, Mehta Publisher, New Delhi, India; 92-147.
- Collee, JG; Fraser, AG; Marmion, BP and Simmons, A. (1996). Fungi. In: Mackie McCartney Practical Medical Microbiology, 14th ed. Churchill Livingstone, UK: 695-717.
- **9-** •Cravatto, G ; Boffa, L; Genzini, L and Garella D (2010). Phytotherapeutics : Anevaluation of the potential of 1000 plants. J. Clin. Pharm. Ther., 35: 11-48.
- 10- •Egharevba, HO and Kunle, OF. (2010). Preliminary Phytochemical and Proximate Analysis of the leaves of *Piliostigma thionningii* (Schumach.) Milne-Redhead. Ethnobotanical Leaflets, 14: 570-77.
- 11- •Endo, E. H.; Cortez, D. A.; Ueda-Nakamura, T.; Nakamura, C. V.and Dias Filho, B.P. (2010). Potent antifungal activity of extracts and pure compound isolated from

Thi-Qar Medical Journal (TQMJ) : Vol (7) No (1) : 2013 (102-119) 116

pomegranate peels and synergism with fluconazole against *Candida albicans*. Res. Microbiol. 161, 534–540.

- 12- •Gil, M. I.; Tomas-Barberan, F. A.; Hess-Pierce, B.; Holcroft, D. M.and Kader, A. A. (2000).Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J. Agric. Food Chem., 48: 4581–4589.
- Harborne, J.B. (1984). Pytochemical methods : Aguide to modern techniques of plant analysis. 2nd ed. Chapman and Hall, London .UK. 288p.
- 14- •Jayaprakasha, G. K.; Negi, P. S. and Jena, B. S. (2006). Antimicrobial activities of pomegranate. In Pomegranates: Ancient Roots to Modern Medicine; Seeram, N. P., Schulman, R. N., Heber, D., Eds.; CRC Press: Boca Raton, FL: 167–183.
- 15- •Jawetz, M and Adelbergs (2001). Medical microbiology 22 Ed , p201 Lange Medical Books/ McGraw-Hill. Medical Publishing Division.
- 16-•Kim, ND; Mehta, R;Yu, W; Neeman, I; Livney, T; Amichay A, et al. (2002).Chemopreventive and adjuvant therapeutic potential of pomegranate (*Punica granatum*) for human breast cancer. Breast Cancer Res Treat. Feb;71(3):203–17.
- 17- •Koneman, EW; Allen, SD; Janda, WM; Schreckenberger, Pc and Winn, WC. (1997). Mycology. In: Color Atlas and Text book of Diagnostic Microbiology, 5th ed. Lippincott Williams and Wilkins, USA: 983 1069.
- 18- Lansky, E. P. and Newman, R. A. (2007). "Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer," Journal of Ethnopharmacology, 109(2): 177–206.
- 19-Naz, S. ; Siddiqi, R. ; Ahmad, S. Rasool, S. A. and Sayeed, S. A. (2007).
 "Antibacterial activity directed isolation of compounds from *Punica granatum*," J
 . Food Sci, 72(9): 341–345.
- 20- Oloyede, O.O. (2005). Chemical profile of unripe pulp of Carica papaya. Pak.J.Nutri. 4(6):379-381.
- 21- Osorioa, E.; Floresa, M.; Hernndeza, D.; Venturab, J.; Rodrgiez, R. and Aguilar, C. N.(2010).Biological efficiency of polyphenolic extracts from pecan nuts shell (Carya Illinoensis), pomegranate husk (Punica granatum) and creosote bush leaves (Larrea tridentata Cov.) against plant pathogenic fungi. Ind. Crops Prod. 31, 153–157.

117

- 22- Padhye, A.A. and Weitzman, I. (2005). The dermatophytes, Topley and Wilson's Microbiology and Microbial infections, 10th ed, London: 782-815.
- 23- Parmar, H. S. and Kar, A. (2007). "Protective role of Citrus sinensis, Musa paradisiaca, and *Punica granatum* peels against diet-induced atherosclerosis and thyroid dysfunctions in rats," Nutrition Research, 27, (11): 710–718.
- 24- •Perez, C., Pauli, M. and Bazerque, P. (1990). An antibiotic assay by agar-well diffusion method. Acta Biologiae et Medecine Experimentaalis, 15:113-115.

25- Related, A.; LinksHeber, D. ; Seeram, N. P. et al., (2007). "Safety and antioxidant activity of a pomegranate ellagitannin-enriched polyphenol dietary supplement in overweight individuals with increased waist size," J. Agric. & Food Chemi., 55: 10050–10054.

- 26-Ribereau Gayon , P. (1972) . Plant phenolics . 7 th ed . Oliver and Boyed .
 Endinbarg . 254 p .
- **27** Ricci, D; Giamperi, L; Bucchini, A. and Fraternale, D. (2006). "Antioxidant activity of *Punica granatum* fruits," Fitoterapia, 77(4): 310–312.
- 28- •Saad Sabbar Dahham, Mir Naiman Ali, Hajera Tabassum and Mazharuddin Khan
 (2010).Studies on Antibacterial and Antifungal Activity of Pomegranate (*Punica granatum* L.) American-Eurasian J. Agric. & Environ. Sci., 9 (3): 273-281.

29- • Samy, R. P. and Gopalakrishnakone, P. (2008). Therapeutic potential of

plants as anti-microbials for drug discovery. Evidence-Based Compl. Alt.

Med. 7: 283-294.

- 30- •Sánchez-Lamar, A. ; Fonseca, G Fuentes . J. L. et al., (2007). "Assessment of the genotoxic risk of *Punica granatum* L. (Punicaceae) whole fruit extracts," *Journal of Ethnopharmacology*, 115(3): 416–422.
- 31- •Siham S. Shaokat , Hamoudi A. Hameed , Hassan J. MohammadSiham, S.; Shaokat, Hamoudi A.; Hameed and Hassan J.Mohammad(2007). Anti-fungal Activity of Punica granatum I.peels Powder and Extracts from Pathogenic Samples. Iraqi J.Pharm.Sci., 16 (2):12.

32- •Tayel, A. A.; El-Baz, A. F.; Salem, M. F. and El-Hadary, M. H. (2009).

Potential applications of pomegranate peel extract for the control of citrus green mold. J. Plant Dis. Prot. 116:252–256.

- **33** •Trease,G.E. and Evans,W.C.(1996).A text book of pharmacognosy.14th ed. Bailliere Tindall Ltd.London.
- 34- •Vasconcelos, LC; Sampaio, MC; Sampaio, Fc and Higino JS. (2003). Use of Punica granatum as an antifungal agent against candidosis associated with denture stomatitis. Mycoses;46(5–6):192–6.
- 35- •Vasconcelos, LC; Sampaio, FC; Sampaio, MC; Pereira Mdo, S; Higino JS and Peixoto MH. (2006). Minimum inhibitory concentration of adherence of Punica granatum Linn (pomegranate) gel against *S. mutans, S. mitis* and *C. albicans*. Braz Dent J. 17(3):223–7.
- **36** -Voravuthikunchai, S. P. ; Sririrak, T. ; Limsuwan, S. ; Supawita, T. ; Iida, T. and Honda, T. (2005). "Inhibitory effects of active compounds from *Punica granatum* pericarp on verocytotoxin production by enterohemorrhagic *Escherichia coli* O157:H7," J Health Science, 51(5): 590–596.
- 37--•Zhang, J.; Zhan, B.; Yao, X.; Gao, Y. and Shong, J. (1995). "Antiviral activity of tannin from the pericarp of *Punica granatum* L. against genital Herpes virus in vitro," Zhongguo Zhong yao za zhi, 20(9): 556–576.

الفاعلية المضادة للفطريات للمستخلص الكحولي والماني لقشور نبات الرمان ضد بعض مسببات الاصابات الفطرية الغير جلدية

فاتن نعيم عباس

قسم الاحياء المجهرية كلية الطب جامعة ذي قار

الخلاصة:

أجريت دراسة سريرية وفطرية على الاصابات الفطرية السطحية للمسببات الغير جلدية على 23 حالة مرضية (7 ذكور والإناث 16)، والتي تم جمعها من مرضى تتراوح أعمارهم (5-50) سنة. أجري الفحص المجهري باستخدام هيدروكسيد البوتاسيوم، وتم عزل وتشخيص 21 عزلة من الفطريات الغير جلدية

Antifungal Activities of Alcoholic and Aqeuous Extracts of punica granatum against Some Non-Dermatophytic Fungi 119

تم أيجاد الفعالية المضادة للفطريات للمستخلص الكحولي والمائي لقشور نبات الرمان باستخدام طريقة الانتشار من الحفر .وتحديد أقل تركيز مثبط (10- 300 ملغم/مل) ضد الفطريات المعزولة. وكانت فعالية المستخلص الكحولي أعلى بقليل من فعالية المستخلص المائي . تشير النتائج امكانية أرجاع الفاعلية الى وجود المركبات الفعالة في المستخلصات لقشور الرمان كعامل مضاد للفطريات .