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Abstract

The positive parity low-spin states of even-odd 129−133Ba isotopes were studied in this study using the 
Interacting Boson–Fermion Model (IBFM-1). The single fermion is predicted to be in one of three single-
particle orbits: 2d5/2, 2d3/2, and 3s1/2. The Interacting Boson Model (IBM-1) was used to investigate the 
energy levels, electric quadrupole transition probabilities, and potential energy surface of even-even Barium 
isotopes (a core for even-odd nuclei).

The measured positive parity low-state energy spectra and predicted energy levels, as well as the B(E2) 
transition probabilities, are reasonably consistent with the experimental data and previous research for Ba 
isotopes. The potential energy surface contour plot reveals that all interesting nuclei are deformed and have 
γ -unstable-like properties.
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1. Introduction

Traditional descriptions of the nuclear structure of the Barium region have proven difficult 
to interpret [1]. These nuclei were distinguished by shape changes ranging from spherical to de-
formed [2]. The IBM-1 has a group structure U(6). This Hamiltonian’s three limiting symmetries, 
U(5), SU(3), and O(6), corresponding to the geometrical shapes, spherical vibrator, symmetric 
rotor, and γ -unstable rotor, respectively [2]. Barium nuclei have been successfully treated as ex-
hibiting the O(6) symmetry of the Interacting Boson Model (IBM-1) in calculations [3,4]. The 
IBM has succeeded in reproducing nuclear collective levels in terms of s and d bosons, which are 
fundamentally the collective s and d pairs of valence nucleons with angular momentum L=0 and 
2, respectively [5–8]. The Interacting Boson–Fermion Model (IBFM-1) was proposed by Arima 
and Iachello [9,10] and describes odd-mass nuclei as systems of fermions coupled to the IBM 
core via an appropriate Boson-Fermion Interaction.

The IBM and IBFM can be unified into a superalgebra U(6/m), where the dimension of 
the boson space is 6, and mj = ∑

ji
(2ji + 1) for the fermion space with angular momentum 

(j = j1, j2, . . .). The even-odd Ba isotopes, together with the even–even Ba isotopes, were stud-
ied as an example of a U(6/12) super-symmetry [11–14], in which the odd nucleon could occupy 
single-particle orbits j = 1/2, 3/2, and 5/2. In recent years, extensive research has been con-
ducted on the structure of the Barium nucleus. The study of the geometry of the Ba isotopes 
discovered that when the neutron number decreases from N=73 to N=77, the absolute mini-
mum of the potential for the Ba isotopes evolves from spherical to oblate and finally to prolate 
shapes [15]. The interacting boson model calculations, with or without the inclusion of intruder 
states in the even 129−133Ba nuclei, yielded identical energy spectra and absolute B(E2) values 
up to excitation energy of about 1.5 MeV [16]. The shape/phase transition in Ba nuclei was cal-
culated using the IBM and the systematics of the spectra, as well as the reduced E2 transition 
probabilities B(E2) [17]. In the considered Ba isotopic chain, the prolate-to-oblate shape/phase 
transition was shown to occur quite smoothly as a function of neutron number N, with γ -softness 
playing an essential role. The evolution of the deformation parameter β and of the isotope shifts 
for a chain of Ba isotopes with the IBM-CM (the CM means configuration mixing) approach has 
been studied [18]. The total energy surface and the nuclear shape in the isotopic chain 172−194Pt 
have been calculated using the interacting boson model, including even-even and even-odd Pt 
isotopes within the IBM and the IBFM to give a comprehensive view of these isotopes in a rather 
simple way [19]. The results of the IBFM multilevel calculations for 129−133Ba isotopes will 
be presented for energy levels and transition probabilities and will be compared with the corre-
sponding experimental data. The IBM-1 will apply to calculate the low-energy levels according 
to the arrangement of bands (gr-, γ - and β-) and the B(E2) value for even-even 128−132Ba iso-
topes. Then, using the potential energy surface E(N, β , γ ), investigate the nuclear structure as 
described for Ba isotopes.

2. Theory

2.1. The Interacting Boson Model (IBM-1)

According to the Interacting Boson Model (IBM), low-lying collective states in medium and 
heavy nuclei away from closed shells are controlled solely by excitations of the valence protons 
and neutrons (i.e., particles outside the major closed shells at 2, 8, 20, 28, 50, 82, and 126), while 
the closed shell core is inert. In the present case, the valence protons and neutrons are counted 
2
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from the nearest closed shells, Z=50 and N=82. Furthermore, it is assumed that the coupled 
particle configurations (identical particles) form pairs of angular momentum 0 and 2. These pro-
tons (neutrons) pairs are treated as bosons. Bosons with angular momentum L=0 are denoted by 
sπ (sν ) and are called s-bosons, while the bosons with angular momentum L =2 are denoted by 
dπ (dν ) and are called d-bosons. The underlying structure of the six-dimensional unitary group 
U(6) of the model leads to a simple Hamiltonian, capable of describing the three specific types 
of collective structure with classical geometrical analogs: vibrational U(5), rotational SU (3), and 
γ -unstable O(6). Hamiltonian H can be explicitly written in terms of boson creation (s†, d†) and 
annihilation (˜s, ˜d) operators [20] so that,

H =εs(s
†.s̃) + εd(d†.d̃)

+
∑

L=0,2,4

1

2
(2L + 1)

1
2 CL

[[
d† × d†

](L) ×
[
d̃ × d̃

](L)
](0)

+ 1√
2
υ2

[[
d† × d†

](2) ×
[
d̃ × s̃

](2) +
[
d† × s†

](2) ×
[
d̃ × d̃

](2)
](0)

+ 1

2
υ0

[[
d† × d†

](0) × [
s̃ × s̃

](0) +
[
s† × s†

](0) ×
[
d̃ × d̃

](0)
](0)

+ 1

2
u0

[[
s† × s†

](0) × [
s̃ × s̃

](0)

](0)

+ u2

[[
d† × s†

](2) ×
[
d̃ × s̃

](2)
](0)

(1)

It can be written in general form as [20]

Ĥ = εn̂d + a0p̂.p̂ + a1L̂.L̂ + a2Q̂.Q̂ + a3T̂3.T̂3 + a4T̂4.T̂4 (2)

Where: n̂d =
(
d†.d̃

)
the total number of d boson operator; p̂ = 1/2 

[(
d̃.d̃

)
− (s̃.s̃)

]
the pairing 

operator; L̂ = √
10

[
d† × d̃

]1
the angular momentum operator; Q̂ =

[
d† × s̃ + s† × d̃

](2) +
χ

[
d† × d̃

](2)

the quadrupole operator where χ denotes the quadrupole structure parameter and 

the values are 0 and ±
√

7
2 [20,21]; T̂r =

[
d† × d̃

](r)

is the octoupole and hexadecapole operator; 
and ε = εd − εs is the boson energy.

The phenomenological parameters a0, a1, a2, a3, and a4 designated the strength of the pairing, 
angular momentum, quadrupole, octoupole and hexadecapole interaction between the bosons, 
respectively. The Hamiltonian operator for O(6) dynamical symmetry is [2,9]:

Ĥ = a0P̂ .P̂ + a1L̂.L̂ + a3T̂3.T̂3 (3)

Where the parameters it contain are a0, a1 and a3 only. The Eigen value for this dynamical can 
be written as [2]:

E = A(N − σ) (N + σ + 4) + Bτ (τ + 3) + CL(L + 1) (4)

Where (A = a0/4, B = a3/2, C = a1−a3/10); N is the boson number, σ = N, N − 2, . . . , 0 or 
1.

The O(6) are labeled by the quantum number; τ = σ, σ − 1, ..., 0; L = 2λ, 2λ − 2, . . . , λ + 1
here λ is non-positive integer defined by λ = τ −3υ�, υ� = 0, 1; υ� is number of triplet bosons.

σ is the irreducible representations (irreps) of O(6), while τ is the irreps of O(5).
3
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2.2. The Interacting Boson–Fermion Model (IBFM-1)

The Interacting Boson-Fermion Model (IBFM) has as its building blocks a set of N-bosons 
with L = 0, 2 and an odd nucleon (either a proton or a neutron). In the odd-A nuclei are de-
scribed by the coupling of the odd fermionic quasi-particle to a collective boson core. The total 
Hamiltonian can be written as the sum of three-parts [11,21]:

H = HB + HF + VBF (5)

Where HB is the IBM Hamiltonian [2,4] for the even-even core, HF is the Fermion Hamiltonian 
containing only one-body terms [8,11,21].

HF =
∑
jμ

εj a
†
jμãjμ (6)

Where εj are the quasi-particle energies and a†
jmãjm is the creation (annihilation) operator for 

the quasi-particle in the eigenstate |jm 〉; VBF is the boson-fermion interaction that describes the 
interaction between the odd quasi-nucleon and the even-even core nucleus:

VBF =
∑
j

Aj

[(
d† × d̃

)(0) ×
(
a

†
j × ãj

)(0)
](0)

0
+

∑
jj ′


jj ′ [Q(2) ×
(
a

†
j × ãj ′

)(2)](0)
0

+
∑
jj ′j ′′

�
j ′′
jj ′ : [

(
d† × ãj

)(
j ′′)

×
(
d̃ × a

†
j ′

)(
j ′′)

](0)
0 : (7)

VBF is dominated by three terms: The first term is a monopole interaction characterized by the 
parameter A0 which plays a minor role in actual calculations:

Aj = A0
√

2j + 1 (8)

The most important arises from the quadrupole interaction are the second and third terms 
[11,12] characterized by 
0 and the exchange of the quasi-particle with one of the two fermions 
forming a boson characterized by �0 and Q(2) is the core boson quadrupole operator, this ex-
change force is a consequence of the Pauli principle for the quadrupole interaction between 
protons and neutrons [21]. The remaining parameters in Eq. (8) can be related to the Bardeen-
Cooper-Schrieffer (BCS) theory occupation probabilities uj and νj of the single-particle orbits 
by [11,12,16]:


jj ′ = √
5
0

(
ujuj ′ − νj νj ′

)
Qjj ′ (9)

�
j ′′
jj ′ = −√

5�0

[(
uj ′νj ′′ + νj ′uj ′′

)
Qj ′j ′′βj ′′j + (

uj ′νj ′′ + νj ′uj ′′
)
Qj ′′j βj ′j ′′

]
√

2j ′′ + 1
(10)

Where Qjj ′ and βjj ′ are the matrix elements of the quadrupole operator on a single-particle 
basis and the structure coefficients of the d boson deduced from microscopic considerations, 
respectively [12,22],

Qjj ′ = 〈
j

∥∥Y (2)
∥∥ j ′〉

βjj ′ = Qjj ′(uj νj ′ + νjuj ′)

}
(11)

The BCS calculation is used to generate the occupation probabilities uj and νj . The quasi-
particle energy εj of each single-particle orbital can be obtained by solving the gap equations 
[12,15]:
4
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Table 1
Adopted values for the parameters used for IBM-1 calculations. All parameters are given in MeV, excepted N.

Isotopes N EPS PAIR ELL Q.Q OCT HEXA
128Ba 8 0.0 0.048 0.016 0.0 0. 033 0.0
130Ba 7 0.0 0.072 0.034 0.0 0.036 0.0
132Ba 6 0.0 0.106 0.056 0.0 0.042 0.0

εj =
√[(

Ej − λ
)2 + �2

]
ν2
j = 1/2

[
1 − (

Ej − λ
)
/εj

]
u2

j = 1 − ν2
j

⎫⎪⎪⎬
⎪⎪⎭ (12)

Where Ej is the single-particle energy calculated from the relations in [13], λ is the Fermi level 
energy and � is the pairing gap energy, which was chosen to be 12 A−1/2 MeV [23]. That leaves 
the strengths A0, 
0, and �0 as free parameters, which are varied to give the best fit to the 
excitation energies.

3. Results and discussion

3.1. Even–even Ba isotopes (core)

This section presented the calculated results of the low-lying states of the even-A nuclei, 
whose proton number is equal to 56, with neutron numbers ranging from 72 to 76. The results 
include energy levels, the B(E2) values, and Potential Energy Surface.

3.1.1. Energy levels
The 128−−132Ba nuclei have been described using the IBM-1 Hamiltonian (Eq. (2)). The com-

puter code PHINT, written by Scholten [24], is used to calculate energy levels. The isotopic 
chains of Barium with a number of bosons ranging from 5 to 7 are used in the IBM-1 framework. 
Table 1 shows the coefficient values that were used in this study. Fig. 1 depicts the calculated 
ground (gr-), β1- and γ1-bands, as well as experimental data of energy levels. The IBM cal-
culations (energies, spin, and parity) agree well with the experimental results [25]. However, it 
deviates from the experimental data’s high spin (energies). Levels with ‘()’ correspond to cases 
for which the spin and/or parity of the corresponding states are not well established experimen-
tally. The γ2-band and the β2-band are calculated in this work and are given in Table 2 and 
Table 3, respectively. These tables show a comparison between the IBM-1 calculated energy 
levels and the experimental data. From this comparison, we can see a good agreement between 
experimental data and the IBM-1 calculations. Levels with ‘*’ correspond to cases for which the 
spin and/or parity of the corresponding states are not well established experimentally.

3.1.2. B(E2) values
A successful nuclear model must provide a good description of the nucleus’s energy spectrum 

as well as its electromagnetic properties. In IBM-1, the electromagnetic transitions operator has 
the general form [20,21,26].

T l
m = α2δl2

[
d† × s̃ + s† × d̃

]2 + βl

[
d† × d̃

]l + γ0δl0δm0[s† × s̃]0
0 (13)
m m

5
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Fig. 1. Comparison the IBM-1 calculations with the available experimental data [25]for 128−132Ba nuclei.

Table 2
γ2-bands for Ba isotopes (in MeV). The experimental data are taken from [25].

Jπ IBM-1 EXP. IBM-1 EXP. IBM-1 EXP.
128Ba 130Ba 132Ba

2+ 1.8150 2.0390* 2.0460 1.8829 2.5760 1.9981
3+ 2.2470 2.2034* 2.7600 2.0791* 3.4580 3.4238*
4+ 2.1400 1.8337 2.500 2.3179* 3.0800 3.0687*
5+ 2.9190 2.4254* 3.5700 ——- ——- ——-

The first term can be presented only in the case of l = 2 transitions, while the last term can be 
presented only in the case of l = 0 transitions. This is assured by Kronecker delta (δ) accompa-
nying them. In the special cases of electric monopole, quadrupole and hexadecapole transitions, 
6
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Table 3
β2-bands for Ba isotopes (in MeV). The experimental data are taken from [25].

Jπ IBM-1 EXP. IBM-1 EXP. IBM-1 EXP.
128Ba 130Ba 132Ba

0+ 1.4850 1.7100 1.6200 —- 1.8900 1.6600
2+ 2.2590 2.3472* 2.3700 —- 2.9820 2.0464*
4+ 2.1790 1.9077 2.7520 2.7840* 3.5140 3.4949*
6+ 2.8170 2.7211* 3.5940 — 4.7180 —–

Table 4
Effective charge used to reproduce B(E2)values for 128−−132Ba nuclei.

Isotopes N B(E2;2+
1 →0+

1 ) w.u. [25] B(E2;2+
1 →0+

1 ) e2b2 eB

128Ba 7 72 0.275 0.119
130Ba 6 57.9 0.226 0.121
132Ba 5 43.4 0.173 0.120

the specific form of the transition operator is respectively, γ0, α2 and βl (l = 0, 1, 2, 3, 4) which 
are parameters specifying the various terms in the corresponding operators. Then the electric 
quadrupole transition is:

T E2
m =α2

[
d† × s̃ + s† × d̃

]2

m
+ β2

[
d† × d̃

]2

m

=α2

([
d† × s̃ + s† × d̃

]2

m
+ χ

[
d† × d̃

]2

m

)

=eBQ̂ (14)

Where α2 and β2 are two parameters, and (β2 = χα2, α2 = eB (effective charge of boson)) B(E2) 
values are defined in terms of reduced matrix elements by [20]:

B
(
(E2 : Li → Lf

) = 1

2Li + 1

∣∣∣〈Lf

∥∥∥T (E2)
∥∥∥Li

〉∣∣∣2
(15)

Where: 
∣∣〈Lf

∥∥T (E2)
∥∥Li

〉∣∣ is the matrix element of (E2) the electric quadrupole transition. The 
values of effective charge (eB) were estimated to reproduce the experimental B(E2;2+

1 →0+
1 ) 

from the selection rules (σ = 0 and τ = ±1) [10,20] and it is tabulated in Table 4. The com-
puter code BEFM, written by Scholten [24], is used to calculate B(E2) values. Table 4 shows the 
comparison of calculated B(E2) values with experimental data [25] for all nuclei under consid-
eration. Table 5 shows that the B(E2; 2+

1 →0+
1 ) values are increase as neutron number increases 

toward the middle of the shell in Ba nuclei, in general, there are a good agreement between the 
calculated B(E2)and the experimentally data.

3.1.3. B(M1) values and E2/M1 mixing ratios
To investigate M1 transitions in the IBM-1 framework, it has therefore been necessary to 

introduce second-order terms [6]. Then the magnetic dipole operator was written as [2,4,12]:

T (M1) = (gB + AN)L̂ + B[T̂ (E2) × L̂] + Cn̂dL̂ (16)
7
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Table 5
The IBM-1 and the experimental values of B(E2)for 128−−132Ba nuclei (in e2.b2).

Ji → Jf IBM-1 EXP. [25] IBM-1 EXP. [25]
1128Ba 130Ba

2+
1 → 0+

1 0.2719 0.27 0.2255 0.22
2+

2 → 2+
1 0.3682 0.2034 0.3012 0.3002

4+
1 → 2+

1 0.3682 0.4100 0.3012 0.30
4+

2 → 2+
2 0.2225 0.2400 0.1662 0.1700

4+
2 → 4+

1 0.1888 —- 0.1511 —-
5+

1 → 4+
2 0.0922 —- 0.0711 —-

5+
1 → 6+

1 0.0491 —- 0.0379 —-
6+

1 → 4+
1 0.3965 0.3900 0.3172 0.3700

6+
2 → 4+

2 0.2633 0.2800 0.2033 0.2100
6+

2 → 6+
1 0.1229 —- 0.0949 —-

8+
1 → 6+

1 0.3862 0.3800 0.2981 0.2800

Ji → Jf
1128Ba

2+
1 → 0+

1 0.1728 0.17
0+

2 → 2+
2 0.2263 0.2233

2+
2 → 2+

1 0.2263 —-
4+

1 → 2+
1 0.1207 0.2300

4+
2 → 2+

2 0.1097 —-
4+

2 → 4+
1 0.1646 —-

5+
1 → 4+

2 0.02596 —-
5+

1 → 6+
1 0.2304 0.2271

6+
1 → 4+

1 0.1392 0.2200

Where gB (atomic number (Z)/mass number (A)) is the effective boson g-factor, N is the number 
of bosons, L̂ is the angular momentum operator, T̂ (E2) is matrix elements of the E2 operator, n̂d
is d-boson number operator, and the g-factor of the states defined as [2]:

gL = μL/L (17)

Where μL is the magnetic moments and can be defined as:

μL =
√

4π

3

L√
[L(L + 1) (2L + 1)]

〈L‖T (M1)‖L〉 (18)

❖ The magnetic dipole transitions can be calculated for O(6) dynamical symmetry. The matrix 
element of the n̂d operator can be written as [9]:〈

[N ] , σ = N,τ, ν,L
∣∣n̂d

∣∣ [N ] , σ = N − 2, τ, ν,L
〉

= −√
N

√[
N (N + 3) − τ (τ + 3)

2N (N + 1)

]√[
(N − 1) (N − 2) − τ(τ + 3)

2N (N + 1)

]
(19)

and

g2+
1

= gB + AN +
√

4π

3

4 + N(N − 1)

2(N + 1)
C (20)

The Ml matrix element which yields from eq. (15) can be written as [20,24]:
8
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Table 6
The coefficients of T(M1) of Ba isotopes used in the present work. All parameters are given in (μN), 
except N.

Isotopes N gB A C B
128Ba 8 0.4375 −0.0530 −0.00003 −0.0263
130Ba 7 0.4307 −0.0115 0.00001 −0.033
132Ba 6 0.4242 −0.0140 −0.000003 −0.0385

〈
ϕ̀Lf ‖T (M1)‖ϕLi

〉 = − Bf (LiLf)
〈
ϕ̀Lf ‖T (E2)‖ϕLi

〉
+ C[Li (Li + 1) (2Li + 1)]1/2 × 〈

ϕ̀Lf|n̂d |ϕLi

〉
δLiLf (21)

Where ϕ̀ and ϕ denote additional quantum numbers. In the first term the spin factor f (LiLf), 
given separately [7] for the cases L → L ± 1 and L → L, written as:

f (LiLf) =
[

1
40 (Li + Lf + 3) (Lf − Li + 2)

× (Li − Lf + 2) (Li + Lf − 1)

]1/2

(22)

The second term of eq. (22) only contributes to transitions between states of the same spin since 
the corresponding operator in eq. (21) is diagonal in L̂. For L ±1 → L transitions, Eq. (21) leads 
to a particularly simple expression for the reduced E2/M1 mixing ratio, namely [20,24]:

�(E2/M1) = 〈
ϕ̀Lf ‖T (E2)‖ϕLi

〉
/
〈
ϕ̀Lf ‖T (M1)‖ϕLi

〉 = −1/Bf (LiLf) (23)

The reduced mixing ratio � (E2/M1) is related to the quantity normally measured by [26]:

δ(E2/M1) = 0.835[Eγ /(1 MeV)]�(E2/M1) (24)

Where: Eγ is in MeV and � (E2/M1) is in eb/μN . D. P. Grechukhin [27] has already derived the 
spin dependence f (LiLf) of eq. (22) in the framework of the geometrical model in an analogous 
way, by expressing the relevant part of the M1 operator in terms of the quadrupole coordinates of 
the nuclear surface. Similarly, to calculate the B(M1) values by using the computer codes BEFM, 
we must specify the values of the parameters gB , A, C, and B. All these parameters are tabulated 
in Table 6.

The comparison of the calculated B(M1) values with the experimental data [25] are given 
in Table 7 for all isotopes under study. The B(M1) of 128Ba for 2+

2 → 2+
1 and 4+

2 → 4+
1 tran-

sitions are 0.0002 and 0.0003 which agreement with the experimental data 0.0001 and 0.0002, 
respectively. For 132Ba, the 2+

2 → 2+
1 transition is 0.0002, which is in disagreement with the 

experimental value 0.0017.
The Interacting Boson Model has been applied to calculate the E2/M1 multipole mixing ratios 

over a wide range of nuclei. The multipole mixing ratios; In the transition nucleus, even-parity 
states of even-even nuclei are ascribed to the collective quadrupole motion of the nucleus as 
a whole the δ(E2/M1) multipole mixing ratios of the electromagnetic transitions between the 
energy states of 128−132Ba nuclei were calculated by using equations (23) and (24) and given in 
Table 8. In general, it can be seen from the table that calculated results are not in better agreement 
with the experimental data [25] for some Ba isotopes under study. That the mixing ratio found for 
128Ba the 2+

2 → 2+
1 , 3+

1 → 2+
1 , 3+

1 → 4+
1 , 4+

2 → 4+
1 transitions are 18.0903, 19.1427, 18.6761

and 13.8412, respectively. These values are in agreement with the experimental value of 13(+16
−4 ), 

4(+12
−1 ), 3.7(+25

−12) and −14(+8
−16), respectively. For 132Ba, the 3+

1 → 2+
1 , 3+

1 → 2+
2 , 3+

1 → 4+
1

which agreement with the experimental values of 20(8), −21(10) and 0.9000, respectively. For 
9
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Table 7
B(M1) values for Barium nuclei (in μ2

N
).

Ji → Jf
128Ba 130Ba 132Ba

IBM-1 EXP. IBM-1 EXP. IBM-1 EXP.

2+
2 → 2+

1 0.0002 0.0001 0.0002 —— 0.0002 0.0017
3+

1 → 2+
2 0.0002 —— 0.0002 —— 0.0002 ——

3+
1 → 4+

1 0.0001 —— 0.0001 —— 0.0001 ——
4+

2 → 4+
1 0.0003 0.0002 0.0004 —— 0.0004 ——

5+
1 → 4+

2 0.0002 —— 0.0003 —— 0.0002 ——
5+

1 → 6+
1 0.0002 —— 0.0002 —— 0.0002 ——

6+
2 → 6+

1 0.0005 —— 0.0006 —— 0.0005 ——
7+

1 → 6+
2 0.0001 —— 0.0001 —— 0.0001 ——

7+
1 → 8+

1 0.0003 —— 0.0003 —— 0.0002 ——

Table 8
The IBM-1 and the experimental values of δ(E2/M1) multipole mixing ratios for 126−130Ba nuclei.

Ji → Jf
128Ba 130Ba

Eγ (MeV) δ (E2/M1) Eγ (MeV) δ (E2/M1)

IBM-1 EXP. IBM-1 EXP. IBM-1 EXP. IBM-1 EXP.

2+
2 → 2+

1 0.4950 0.600 18.0903 13(+16
−4 ) 0.5400 0.5500 17.5094 —-

3+
1 → 2+

1 1.1040 1.0380 19.1427 4(+12
−1 ) 1.0140 1.0030 28.5112 20(8)

3+
1 →2+

2 0.6090 0.4370 19.1353 —- 0.4880 0.4590 10.8300 −21(10)

3+
1 →4+

1 0.7280 0.5590 18.6761 3.7(+25
−12) 0.7200 0.5757 11.6843 0.9000

4+
2 →4+

1 0.6600 0.6090 13.8412 −14(+8
−16) 0.8840 0.5350 14.0121 —-

5+
1 →4+

2 0.7400 0.5590 13.2670 —- 0.9120 0.4190 13.1458 —-
6+

2 →6+
1 0.8250 0.5320 10.8001 —- 0.9000 0.5070 9.4511 —-

Ji → Jf
132Ba

Eγ (MeV) δ (E2/M1)

IBM-1 EXP. IBM-1 EXP.

2+
2 →2+

1 0.6300 0.5670 17.7075 14(+3
−2)

3+
1 →2+

1 0.8820 0.4790 21.1370 4.0 (12)
3+

1 →4+
1 0.7840 0.3830 14.8120 6 (11)

4+
2 →4+

1 0.8400 0.6017 17.7075 —-
5+

1 →4+
2 1.1200 — 26.8296 —-

5+
1 →6+

1 0.9660 — 11.5258 —-
6+

2 →6+
1 1.0500 —- 9.9964 —-

132Ba the 2+
2 → 2+

1 , 3+
1 → 2+

1 , 3+
1 → 4+

1 transitions are 17.7075, 21.1370, and 14.812 that val-
ues are in agreement with the experimental values of 14(+3

−2), 4.0 (12), and 6 (11) respectively. 
Furthermore, two experimental values have a negative sign and the theoretical calculations have 
a positive sign because the absolute sign of the mixing ratios is a matter of convention, a change 
in the sign from one nucleus to another can be indicative of a change in nuclear shape since the 
mixing ratio is proportional to the quadrupole operator.
10
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3.1.4. Potential energy surface (E(N, β , γ ))
The potential energy surface gives a final shape to the nucleus that corresponds to the function 

of Hamiltonian [28], as in the following equation [20]:

E(N,β,γ ) = 〈N,β,γ | H | N,β,γ 〉/ 〈 N,β,γ | N,β,γ 〉 (25)

The expectation value of the IBM-1 Hamiltonian with the coherent state (|N, β , γ−) is used to 
create the IBM energy surface [20,29]. The state is a product of boson creation operators (b†

c), 
with ∣∣∣N,β,γ 〉 = 1/

√
N !

(
b†
c

)N |0 〉 (26)

b†
c =

(
1 + β2

)−1/2 {
s† + β

[
cosγ

(
d

†
0

)
+ √

1/2 sinγ
(
d

†
2 + d

†
−2

)]}
The energy surface, as a function of β and γ , has been given by [2]:

E (N,β,γ ) = Nεdβ2

(1 + β2)
+ N(N + 1)(

1 + β2
)2

(
α1β

4 + α2β
3 cos 3γ + α3β

2 + α4

)
(27)

Where the αi’s are related to the coefficients CL, ν2, ν0, u2 and u0 of eq. (1). And β is a measure 
of the total deformation of nucleus, where β = 0 the shape is spherical, and is distorted when 
β 	=0, and γ is the amount of deviation from the focus symmetry and correlates with the nucleus, 
if γ = 0 the shape is prolate, and if γ = 60 the shape becomes oblate. The contour plots in the 
γ –β plane, see Fig. 2, resulting from E(N, β , γ ) are shown for 128−132Ba isotopes. For most 
of the considered Ba nuclei the mapped IBM energy surfaces are γ -unstable shapes. γ -unstable 
shape is associated with intermediate values 0 < γ < π/3. The γ -unstable deformation helps 
to understand the prolate-to-oblate shape transition that occurs in the considered Ba isotopes. 
The Ba nuclei considered here do not display any rapid structural change but remain γ -soft. The 
absence of any prolate to oblate transition in 128−132Ba is consistent with the parameter-free 
algebraic predictions of Ref. [30], in which it is clear that prolate to oblate transitions can be 
expected in the Hf-Pt region.

3.2. Even–odd Ba isotopes

This section presented the calculated results of the low-lying states of the even-A nuclei, 
whose proton number is equal to 56, with neutron numbers ranging from 73 to 77. The results 
include energy levels and the B(E2)values.

3.2.1. Energy levels
In recent years, many positive parity states of the even–odd nuclei, such as even–odd Barium 

isotopes have been found experimentally. Below the shell closure N=82 one finds the positive 
parity levels 2d5/2, 2d3/2, 3s1/2, which form the fermionic U(12) algebra. This is already a severe 
approximation, since in the standard Nilsson diagrams the 1g7/2 level lies above the 2d5/2 level, 
but the 2d5/2 level is preferred to close the fermionic algebra. The negative parity level 1h11/2 is 
already present at the same energy as 2d3/2, but it is ignored because of its parity. However, this 
is again a severe approximation, since the 1h11/2 level is known to play a fundamental role in 
the gradual development of nuclear deformation, according to Refs. [31–33]. The basic algebraic 
structure associated with the IBFM Hamiltonian of the nucleus, whose last, unpaired nucleon oc-
cupies single-particle orbits with j=1/2, 3/2 and 5/2, is the direct product UB(6) ×UF(12), where 
11
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Fig. 2. The potential energy surface in γ –β plane for 128−−132Ba nuclei. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

UB(6) is the boson group describing the collective properties of the even–even core and UF(12) 
is the fermion group associated with the single-particle degree of freedom. In the framework 
of the IBFM-1, we performed the BCS calculation, which provided the quasi-particle energies 
(εj ) and shell occupancies (υ2

j ). The adopted εj , υ2
j are presented in Table 9. From Table 9, we 

can see that the occupation probabilities increase as the neutron number increases. The IBFM 
Hamiltonian (eq. (5)) was diagonalized by means of the computer program ODDA [34] in which 
the IBFM parameters are identified as A0=BEM, 
0=BFQ and �0=BFE. In the present work, 
the parameters for the 128−−132Ba core were derived. The IBFM parameters used in ODDA are 
given in Table 10 for all nuclei under study.

The IBFM-1 calculation and the experimental data of low-lying states were plotted in Figs. 3
for the even–odd 129−−133Ba isotopes. In these figures, the IBFM calculations (energies, spin and 
parity) are in good agreement with the experimental data [25]. The levels with ‘()’ correspond 
to cases for which the spin and/or parity of the corresponding states are not well established 
experimentally.

From Fig. 3 for 129−−133Ba isotopes, it can be noticed that for a great number of bosons (N), 
there are more energy levels converging with each other because of increasing number of energy 
levels with boson number (N) increment. Furthermore, it is confirmed the levels the 1/23 with 
energy 0.547 MeV, for 129Ba isotope. In addition, the predicted levels of new energy 0.651 MeV 
with spin (parity) 9/22. The levels 3/22, 5/22, 7/22 and 9/22 have energies 0.340, 0.364, 0.789 
and 0.856 MeV, respectively for 131Ba isotope. As well as, the predicted levels of new energy 
12
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Table 9
Adopted values for the parameters used for IBFM-1 calculations. The parameter εj is given in MeV.

Parameters 129Ba 131Ba

2d5/2 2d3/2 3s1/2 2d5/2 2d3/2 3s1/2

εj 1.34 1.06 1.05 1.21 1.05 1.048
ν2
j

0.34 0.44 0.49 0.36 0.45 0.49

133Ba
εj 1.36 1.064 1.048
ν2
j

0.37 0.48 0.52

Table 10
Adopted parameters which is used for IBFM calculations. All parameters are given in 
MeV.

A 129Ba 131Ba 133Ba

BFE 0.11 0.205 0.009
BFQ 0.01 0.01 0.00
BFM −0.19 −0.27 0.01

Fig. 3. Comparison the IBM-1 calculations with the available experimental data [25] for 129−133Ba nuclei.

0.832 MeV with spin (parity) 7/23. The level 7/22 has energy 0.919 MeV for 133Ba isotope, 
respectively.
13
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Table 11
The coefficients of T E2 for 129−133Ba nuclei used in the 
present work.

Isotopes eB(eb) eF(eb)
129Ba 0.119 0.3856
131Ba 0.121 −0.3579
133Ba 0.120 −0.3520

3.2.2. B(E2)values
The calculation of electromagnetic transitions gives a good test of the nuclear model wave 

functions. In this section we discuss the calculation of E2 transition strengths and compare the 
results with the available experimental data. In general, the electromagnetic transition operators 
can be written as the sum of two terms, the first of which acts only on the boson part of the wave 
function and the second only on the fermion part [10]. In the IBFM the E2 operator is:

Tμ (E2) = eBQ̂B,μ + eF

∑
jj ′

Q̂jj ′ [a†
j × ãj ′ ](2)

μ (28)

Where Q̂B,μB and Q̂jj ′ are the boson and fermion quadrupole operators and eB and eF are 
the effective boson and fermion charges. The values of effective charge (eB) was calculated 
previously (Table 4), and the values of effective charge (eF) are estimated from the selection 
rules �σ1 = �σ2 = �σ3 = 0 and �(τ1 + τ2) = ±1 transitions, which are allowed for eB(α2) =
eF(f2). �σ1 = �σ2 = �σ3 	= 0, �(τ1 + τ2) = ±1 transitions, which are only allowed for eB(α2) 
	=eF(f2), At eB(α2) 	=eF(f2), the effective charge (eF) can be reproduced from the experimental 
B(E2; Ji → Jf) and can be written as

B(E2; (N,1,0) , (τ1, τ2)i ,Li, Ji → (N + 1,0,0) , (τ1, τ2)f ,Lf , Jf

= (α2 − f2)
2 2N(N + 3)

5(N + 1)(N + 2)
(29)

The values of effective charge (eF) are tabulated in Table 11. The comparison of the calculation 
of B(E2) values with experimental data [25] is given in Table 12 for all Ba isotopes. It is in good 
agreement with the experimental data of B(E2) values.

3.2.3. B(M1) values and E2/M1 mixing ratios
For even-odd nuclei and in contrast to even-even nuclei (NF = 0) where M1 transitions are 

largely retarded, magnetic dipole occur in odd-even nuclei (NF = 1), with considerable strength. 
The M1 operator can be written as [35]:

T (M1)
μ = T

(M1)
B,μ + T

(M1)
F,μ (30)

T
(M1)
B,μ = β1

[
d† × d̃

]1

μ
,T

(M1)
F,μ = f1[a†

j × ãj ′ ](1)
μ (31)

Introducing the operators B(1) and A(1), can be rewrite eq. (28) as [35]:

T (M1)
μ = β1B

(1)
μ − t1√

2
A(1)

μ (32)

Where f1 = t1/
√

2, β1 = t1 the M1 operator can be written as [35]:
14
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Table 12
B(E2) values for even-odd Barium nuclei [25] (in e2.b2).

Ji → Jf IBFM-1 EXP. IBFM-1 EXP.
129Ba 131Ba

5/21 → 1/21 0.0561 —— 0.0665 ——
3/21 → 1/21 0.0348 —— 0.0722 0.0946
1/22 → 3/21 0.0368 —— 0.0389 ——
3/22 → 3/21 0.0164 —— 0.0157 ——
3/22 → 1/21 0.0344 —— 0.0067 ——
3/22 → 1/22 0.4446 —— 0.4624 ——
3/21 → 5/21 0.0002 —— 0.0731 ——
5/22 → 3/22 0.6234 —— 0.6459 ——
7/21 → 5/21 0.0825 —— 0.1025 ——
7/22 → 5/22 0.3559 —— 0.3686 ——
9/21 → 7/21 0.2707 —— 0.2806 ——

Ji → Jf
133Ba

5/21 → 1/21 0.0540 0.0103
5/22 → 1/22 0.0637 0.0397
3/21 → 1/22 0.0375 ——
3/21 → 1/21 0.0349 <0.0714
3/22 → 1/21 0.0077 ——
5/21 → 3/21 0.4471 0.1412
5/22 → 3/22 0.0001 ——
7/21 → 5/21 0.6246 ——
7/22 → 5/22 0.0979 0.0469
9/21 → 7/21 0.3565 ——

T (M1)
μ = β1G

(1)
μ (33)

Since G(1) is proportional to the total angular momentum operator, the only non-zero matrix 
elements of the operator (eq.33) are diagonal and all M1 transitions are forbidden. Furthermore, 
the equality t1 = β1 is a poor approximation compared to actual microscopic calculations. We 
shall therefore consider, in this case, the general form (eq.31), with t1 	= β1. The operator (eq.32) 
has the selection rules �σ1 = �σ2 = �σ3 =0, and �(τ1 + τ2)= 0, ±1 [35].

The most general form of the M1 transition operator can be written as [35,36]:

T
(M1)
B,μ = β1

[
d† × d̃

]1

μ
+

∑
jj ′

f
(1)

jj ′ [a†
j × ãj ′ ](1)

μ (34)

Realistic values of the coefficients f (1)

jj ′ can be obtained by relating them to the matrix elements 
of the single particle operators, �σ1 = �σ2 = �σ3 =0

f
(1)

jj ′ = − f1√
3

〈
j

∥∥∥gl
−→
l + gs

−→
s

∥∥∥ j ′〉 (35)

Where 
l is the orbital angular momentum of the odd nucleon, 
s is the spin angular momentum, 
gl and gs are the orbital and spin g-factors and f1 is the overall strength. In the calculations of 
B(M1) values for the odd-mass 129−133Ba isotopes, the collective g-factors and are taken from 
a study of magnetic properties in the even-even Ba nuclei. The single-particle values of the g-
factors are, gl = 0 and gs = −3.82 for a neutron and gl = 1 and gs = 5.58 for a proton [37]. 
15
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Table 13
B(M1) values for even-odd Barium nuclei (in μ2

N
).

Ji → Jf
129Ba 131Ba 133Ba

IBFM-1 EXP. IBFM-1 EXP. IBFM-1 EXP.

3/21 → 1/21 0.0187 —— 0.0181 0.0483 0.0176 >0.0411
1/22 → 3/21 0.0670 —— 0.0652 —— 0.0636 ——
3/22 → 1/21 0.0001 —— 0.0001 —— 0.0001 ——
1/22 → 3/22 0.0005 —— 0.0005 —— 0.0005 0.0020
5/21 → 3/22 0.0063 —— 0.0063 —— 0.0063 ——
5/22 → 3/22 0.0498 —— 0.0496 —— 0.0495 ——
7/21 → 5/21 0.0002 —— 0.0002 —— 0.0002 ——
7/21 → 5/22 0.0714 —— 0.0692 —— 0.0673 ——
7/22 → 5/22 0.0006 —— 0.0006 —— 0.0006 ——
9/21 → 7/21 0.0487 —— 0.0471 —— 0.0458 ——
11/21 → 9/21 0.0007 —— 0.0007 —— 0.0006 ——

Table 14
The IBFM-1 and the experimental values of δ(E2/M1) multipole mixing ratios for 129−133Ba nuclei.

Ji → Jf
129Ba 131Ba

Eγ (MeV) δ (E2/M1) Eγ (MeV) δ (E2/M1)

IBFM-1 EXP. IBFM-1 EXP. IBFM-1 EXP. IBMF-1 EXP.

3/21→1/21 0.1046 0.1101 0.1191 —— 0.1101 0.1081 0.1806 0.1270 (14)
1/22→3/21 0.2020 0.1860 0.1250 —— 0.2122 0.2570 0.1368 ——
3/22→1/21 0.2372 0.2530 3.6773 —— 0.3048 0.2852 2.0846 ——
1/22→3/22 0.0694 0.0248 1.7293 —— 0.0820 0. 1620 2.0836 ——
5/22→3/22 0.1204 0.2033 0.3557 <0.6 0.0202 0.2780 0.0609 ——
7/21→5/21 0.0959 0.0310 1.6270 —— 0.1809 0.2260 3.4208 ——
9/21→7/21 0.7109 0.2554 0.5028 —— 0.1510 0.2611 0.3077 ——

Ji → Jf
133Ba

Eγ (MeV) δ (E2/M1)

IBFM-1 EXP. IBFM-1 EXP.

3/21→1/21 0.0126 0.0120 0.0154 ≤0.013
1/22→3/21 0.1369 0.5270 0.0877 ——
3/22→1/21 0.1620 0.3021 1.1877 ——
3/22→1/22 0.0125 0.1360 0.1178 ——
5/22→3/22 0.2959 0.3281 0.0110 ——
7/21→5/21 0.1724 0.2860 0.8048 ——
9/21→7/21 0.2964 0.3050 0.6905 ——

The calculated reduced probability for M1 transitions and the experimental data [25] are given 
in Table 13.

The calculated mixing ratio and the experimental data [25] are given in Table 14 for the 
129−133Ba isotopes. It can be seen that the calculated results are in fair agreement with the 
available experimental data. The mixing ratio found for 129Ba the 5/22 → 3/22 transition is 
0.3557 that value is in agreement with the experimental value of < 0.6. For 131Ba nucleus, the 
3/21 → 1/21 transition is 0.1806. This value is in agreement with the experimental values of 
0.1270 (14). For 133Ba nucleus, the 3/21 → 1/21 transition is 0.0154. This value is in agreement 
with the experimental values of ≤ 0.013.
16
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4. Conclusions

Based on the IBFM-1, we analyzed the even-odd 129−−133Ba isotopes in this paper. A single 
fermion is coupled to the even-even core of 128−−132Ba isotopes to describe the nuclei. An IBM-
1 analysis was used to obtain the boson core parameters, and the main results for the energy 
levels and electric transition probabilities agree well with the experimental data. Furthermore, our 
calculations support certain energy levels. The potential energy surface for even-even Ba isotopes 
reveals that all nuclei are deformed and have O(6) dynamical symmetry. The results show that the 
energy spectra of the even-odd Ba isotope can be quite well reproduced. The calculated B(E2) 
and B(M1) values are consistent with the experimental data. The E2/M1 mixing ratios for even-
even 128−−132Ba and even-odd 129−−133Ba isotopes with neutron numbers ranging from 72 to 
77 are calculated. Furthermore, the calculated results of the 133Ba nucleus have been compared 
to previous studies, and they are better than of Ref. [38].

We conclude that general characteristics of Ba isotopes are accounted for -unstable shapes are 
supported in this region. This study’s findings confirm that this technique should be expanded to 
investigate the nuclear structure of other nuclei near the A ∼ 130 mass.
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