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ABSTRACT

A central theme is the use of semi — classical approximation to provide a link
between quantum and classical description of the scattering process. We extend the
semi — classical description of two state atomic collisions to low energies for which
the impact parameter treatment fails. In this research, we show the rigorous
computation of the semi — classical limit of the Schrodinger, can be amended to
include the phase shift. WKB is an approximate method to solve the Schrodinger
equation and this method provides approximate wave functions in one dimensional
problems. The Schrodinger equation has been solved by using the semi — classical
and WKB approximation in order to get the phase shift.

1. INTRODUCTION:-

The physical interpretation of collision theory is easier when the

relative motion is described in a semi — classical approach. Many results
have been obtained in a rectilinear trajectory approximation concerning
various total cross sections which compare well with experimental
results. All low energies, however, and in the presence of inelastic
processes, small angular momenta play an important role so that
trajectory effects should be considered. Then, the application of semi —
classical methods may appear somewhat arbitrary since it is possible to
define a single trajectory[1].

The theory of collisions between two atomic systems goes back to
the early days of quantum mechanics[2, 3, 4] and the basic models of
state interaction are detailed in the recent review of Nikitin[5].
Typically, the colliding atoms undergo electronic transitions and one
needs to solve quantum of coupled radial Schrodinger equation. It has
been noted since the early thirties that the relative motion of the heavy
nuclei can be described classically[2, 6]. Semi classically,
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Stueckelberg[7] first suggest the analytical continuation of the
JWKB(Jeffreys — Wentzel — Kramers — Brillouin) wave function into
the complex plane of the internuclear separation and a proper handling
of the Stokes phenomenon. His solution of the avoided crossing time
independent problem[7] shows why a description of the interference in
terms of adiabatic quasiclassical phases fails if the phase difference
accumulated during the adiabatic motion of the two atoms between the
centre of the coupling region and the turning points is small.

Modern line shape studies, especially by non — linear spectroscopy,
are a sensitive tool for the investigation of velocity — changing
collisions in low pressure gases[8]. These collisions effect both the
various level populations and the off — diagonal density matrix
elements[9]. The usual criteria for the applicability of semi — classical
treatments are, up to now, sufficient rather than necessary conditions
and may well be too stringent. More quantitative criteria for the validity
of semi — classical small angle scattering amplitudes for the calculation
of elastic collision kernels are therefore desirable[9].

2. Semi — classical and WKB approximation:-
We are interested in an efficient numerical method to solve the

linear Schrodinger equation with the high frequency initial data[10]
2

ih 8 4+ 2 AY (@) - V() =0

(1)

() = Ag eld/h

(2)
Where Y(r) is the wave function, and h is the re — scaled Plank
constant.

In the semi — classical regime, where h is small, the wave function (1)

and the related physical observable become oscillatory of wave length.
For a particle moving in three dimension in a spherically symmetric

potential V(r) the wave function y(r) has the form[11]

P(r) = Yin (8, @)R(r)

3)

Where Yj,(6, @) is spherical harmonics and R(r) is the radial wave

function obeying the radial equation

_h"1d R(r) n [V( ) +1(1+1)h

2m r2 dr

|R() = ER(M) )
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This equation can be brought to a form similar to the Schrodinger in one
dimension introducing x(r) by writing R(r) = x(r)/r which satisfies
the equation

h? d%y 1(1+1)h2
-2y v + U B R@) = 0 5)
For a bound state boundary conditions satisfied by x(r) are
x(r) -0 ast = 0 (6)

Eq.(5) is similar to one dimensional equation but boundary conditions
eq.(6) are different from those corresponding conditions for a bound
state in one dimension.

For the radical wave function s, (r), which has the asymptotic form

Uy~ sin(kr — In/2 + §;) at large distances[12].

It should be noted that the centrifugal term appears with coefficient
(14 1/2)? instead of the usual I(1+ 1) and k is related to the energy E
by (2mE/h?).

There are three ways to evaluate the phase shifts and may be calculated
from exact solution, WKB(Wentzel-Kramers —  Brillouin)
approximation and perturbation theory. Here we focus on the semi —

classical or WKB approximation[13 14], according to which
1

8 = [, dr [kz +5 vam] — [ dr [kz —5] (7)

rg = TE is the classical turning point. In atomic unit a. u.(e = m =

h=1)
We use Newton — Raphson method to find r; which is defined by

(1+1)2 2Z,e71/a
KP(r) = k2 — 2+ ®)

atr=r; ; ki(r) =0 therefore

K2 — (1'%)2 + 2Z,e7T1/2

=0 )

r3 ry
1+l ’ -r1/a
f(r) = k? — ( %2) + 2Z1i1 - (10)
d_r1 —( ) - (Zzl/rl) [_ + ] _rl/a (11)
atr > o ; f(oo)'»tsk2 : f'~0

Integration goes over the intervals where the radicands are positive. The
Yukawa potential which is given by the equation
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2
Z,e e_r/a

V() = — (12)

has been found to be a useful model potential, in particular for swift

ions where's Bohr adiabatic radius[15]
v

dad = (13)

w
may be chosen[16,17] as the screening radius a. Here w is a

characteristic resonance frequency of a target atom or, if the stopping
medium is an electron gas, the plasma frequency.
Where; 1 is the angular momentum, r is the distance, a is the screening
radius, Kk is the wave vector, and Z;is the atomic number of projectile.
Figures(1, 2) show the results of phase shift which are calculated
from eq.(7) as a function of angular momentum (1) at wave vector k=1,
2 and screening radius a=1 for (a) positive particle and (b) negative
particle with atomic number (Z1=1, 2, 3, 5, 10, 20). From the figure, the
phase shift increases with increasing the atomic number Z; for both
positive and negative projectile charge. At 1 =0 the phase shifts of
positive and negative particle are agreement, but 1 = 1 the discrepancies
in phase shift are observed. The phase shift deceases with increasing the
angular momentum | because the phase shift is dependent on the density
of electrons n and inversely proportional with it therefore the phase shift
at 1=0 has the maximum values and begins to decrease when the angular
momentum | increases. At low 1, the difference in phase shift is
apparent but at high | the values of phase shift are approaching and the
difference becomes very small. For negative particle there is an
inversion in phase shift at 1 <1< 2, while there is no effect at 1 > 2.
Figure(3) shows the results of phase shift which are calculated from
eq.(7) as a function of angular momentum | at wave vector k=2 and
screening radius a=2 for (a) particle of positive and negative
charge(Z1=+5,-5) and (b) particle of positive and negative
charge(Z1=+10,-10). From the figure, the semi — classical and WKB
approximation distinguish between positive and negative projectile
charge because there is a difference in phase shift between positive and
negative particles and the phase shift of positive particle is larger than
that of negative particle especially at low values of angular momentum |
but at high values of 1, the difference becomes small and the values of
phase shift are approaching.
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Figures(4, 5) show the results of phase shift which are calculated
from eq.(7) as a function of wave vector k at screening radius a=1 for
(a)positive particle with atomic number (Z1=+5, +10) and (b)negative
particle with atomic number(Z1= -5, -10). From the figure, the increase
of wave vector k led to a strong increase in phase shift for each value of
angular momentum 1. In both positive and negative particle and at the
angular momentum 1=0, the phase shifts are agreement but at 1 >1 the
phase shift increases with increasing the wave vector k and the phase
shift of positive particle is larger than that of a negative particle. The
phase shift decreases with increasing the angular momentum 1 therefore
it has the maximum values at 1=0 and begins to decrease with increasing
the
angular momentum l.
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Figure-1-a: Phase Shift for Yukawa Potential with k=1 and a=1 in Atomic Unit and
Positive Particle with Atomic Number (Z1=1, 2, 3, 5, 10, 20)
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Figure-1-b: Phase Shift for Yukawa Potential with k=1 and a=1 in Atomic Unit and
Negative Particle with Atomic Number (Z1=1, 2, 3, 5, 10, 20)
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Figure-2-a: Phase Shift for Yukawa Potential with k=2 and a=1 Atomic Unit and
Positive Particle with Atomic Number (Z1=1, 2, 3, 5, 10, 20)
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Figure-2-b: Phase Shift for Yukawa Potential with k=2 and a=1 in Atomic Unit and
Negative Particle with Atomic Number (Z1=1, 2, 3, 5, 10, 20)
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Figure-3-a: Phase Shift for Yukawa Potential with k=2 and a=2 in Atomic Unit for
Positive and Negative Particle with Atomic Number (Z1= +5, -5)
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Figure-3-b: Phase Shift Yukawa Potential with k=2 and a=2 Atomic Unit for
Positive and Negative Particle with Atomic Number (Z1=+10, -10)
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Figure-4-a: Phase Shift for Yukawa Potential with a=1 in Atomic Unit and Positive
Particle with Atomic Number (Z1= +5)
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Figure-4-b: Phase Shift for Yukawa Potential with a=1 in Atomic Unit and Negative
Particle with Atomic Number (Z1=-5)
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Figure-5-a: Phase Shift for Yukawa Potential with a=1 Atomic Unit and Positive
Particle with Atomic Number (Z1=+10)
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Figure-5-b: Phase Shift for Yukawa Potential with a=1 in Atomic Unit and Negative
Particle with Atomic Number (z1=-10)

3. CONCLUSIONS

WKB method is one of the most useful approximations for
computing the energy eign values and phase shift of the Schrodinger
equation. It is important both as a practical means of approximating
solutions to the Schrodinger equation, and also as a conceptual
framework for understanding the classical limit of quantum mechanics.

Schrodinger equation has analytic solutions only for few selected
potential energies. If the potential energy does not have a very simple
form, the solution of it is generally a complicated problem. Some
approximate methods to solve the Schrodinger equation are the
perturbation method, the variational method and WKB approximation
of great versatility which provides approximate wave function in one
and three dimensional problems is a semi classical calculation in
quantum mechanics in which the wave function is assumed an
exponential function with amplitude A and phase shifts & that slowly
varies compared to de Broglie wave length. The phase shift at a turning
point has been found in the framework of the WKB method.

The phase shifts which are calculated from WKB method is
dependent on the atomic number(Z;) and any increase in atomic
number causes a strong increase in phase shift therefore the phase shift
of positive charge is larger than that of the equivalent atomic number of
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negative charge. As a result, the phase shift gets larger with increasing
(Z,) and may in effect turn negative. The phase shift is parallely
proportional with the wave vector(k) and it increases with increasing the
wave vector and this is clear mathematically from the eq.(7)

The relative magnitude of phase shifts which are calculated from
WKB approximation at constant atomic number and wave vector
increases with decreasing the angular momentum 1. WKB method
distinguishes between positive and negative projectile charge at small
values of 1 because the phase shift is large but at high values of 1 the
phase shifts are approaching and become very small and at this region
the perturbation method is found to be applicable.
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