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 الخلاصة
إن موضوع البحث الرئیسي ھو استخدام التقریب شبھ الكلاسیكي لكي یزود برابط یربط بین الوصف الكمي 
والكلاسیكي لعملیة الاستطارة. لقد قمنا بتوسیع الوصف الكلاسیكي لحالتین من التصادمات الذریة حتى 

ث قد بینا حساب دقیق جدا للحد الطاقات الواطئة التي یكون عندھا معالجة معامل الصدم قد فشلت. في ھذا البح
ھو عبارة عن WKB شبھ الكلاسیكي لمعادلة شرویدنكر والذي یمكن إن یعدل لكي یشتمل على فرق الطور. 

طریقة تقریبیة لحل معادلة شرویدنكر وان ھذه الطریقة تزود بدالة الموجة التقریبیة للمسائل ذات البعد الواحد. 
   .و شبھ الكلاسیكي من اجل الحصول على فرق الطور WKBام تقریب إن معادلة شرویدنكر قد حلت باستخد

 
ABSTRACT 

      A central theme is the use of semi – classical approximation to provide a link 
between quantum and classical description of the scattering process. We extend the 
semi – classical description of two state atomic collisions to low energies for which 
the impact parameter treatment fails. In this research, we show the rigorous 
computation of the semi – classical limit of the Schrodinger, can be amended to 
include the phase shift. WKB is an approximate method to solve the Schrodinger 
equation and this method provides approximate wave functions in one dimensional 
problems. The Schrodinger equation has been solved by using the semi – classical 
and WKB approximation in order to get the phase shift.  

1. INTRODUCTION:- 
      The physical interpretation of collision theory is easier when the 
relative motion is described in a semi – classical approach. Many results 
have been  obtained in a rectilinear trajectory approximation concerning 
various total cross sections which compare well with experimental 
results. All low energies, however, and in the presence of inelastic 
processes, small angular momenta play an important role so that 
trajectory effects should be considered. Then, the application of semi – 
classical methods may appear somewhat arbitrary since it is possible to 
define a single trajectory[1].       
      The theory of collisions between two atomic systems goes back to 
the early days of quantum mechanics[2, 3, 4] and the basic models of 
state interaction are detailed in the recent review of Nikitin[5]. 
Typically, the colliding atoms undergo electronic transitions and one 
needs to solve quantum of coupled radial Schrodinger equation. It has 
been noted since the early thirties that the relative motion of the heavy 
nuclei can be described classically[2, 6]. Semi classically, 
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Stueckelberg[7] first suggest the analytical continuation of the 
JWKB(Jeffreys – Wentzel – Kramers – Brillouin) wave function into 
the complex plane of the internuclear separation and a proper handling 
of the Stokes phenomenon. His solution of the avoided crossing time 
independent problem[7] shows why a description of the interference in 
terms of adiabatic quasiclassical phases fails if the phase difference 
accumulated during the adiabatic motion of the two atoms between the 
centre of the coupling region and the turning points is small.   
    Modern line shape studies, especially by non – linear spectroscopy, 
are a sensitive tool for the investigation of velocity – changing 
collisions in low pressure gases[8]. These collisions effect both the 
various level populations and the off – diagonal density matrix 
elements[9]. The usual criteria for the applicability of semi – classical 
treatments are, up to now, sufficient rather than necessary conditions 
and may well be too stringent. More quantitative criteria for the validity 
of semi – classical small angle scattering amplitudes for the calculation 
of elastic collision kernels are therefore desirable[9].   
2. Semi – classical and WKB approximation:-  
      We are interested in an efficient numerical method to solve the 
linear Schrodinger equation with the high frequency initial data[10] 

iћ ୢந(୰)
ୢ୲

+ ћమ

ଶ
∆ψ(r) − V(r)ψ(r) = 0                                                      

(1)     
ψ(r) = A଴e୧ஔ ћ⁄                                                                                        
(2)                             

Where	ψ(r) is the wave function, and ћ is the re – scaled Plank 
constant.  
In the semi – classical regime, where ћ is small, the wave function	ψ(r) 
and the related physical observable become oscillatory of wave length. 
    For a particle moving in three dimension in a spherically symmetric 
potential V(r) the wave function ψ(r) has the form[11] 
ψ(r) = Y୪୫(θ, φ)R(r)                                                                             
(3) 
Where Y୪୫(θ, φ) is spherical harmonics and R(r) is the radial wave 
function obeying the radial equation 
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This equation can be brought to a form similar to the Schrodinger in one 
dimension introducing χ(r) by writing R(r) = χ(r) r⁄  which satisfies 
the equation 

− ћమ

ଶ୫
ୢమ஧
ୢ୰మ

+ ቂV(r) + ୪(୪ାଵ)ћమ

ଶ୫୰మ
− EቃR(r) = 0                                            (5) 

For a bound state boundary conditions satisfied by χ(r) are  
χ(r) → 0       as r → 0                                                                  (6) 
Eq.(5) is similar to one dimensional equation but boundary conditions 
eq.(6) are different from those corresponding conditions for a bound 
state in one dimension. 
For the radical wave function ψ୪(r), which has the asymptotic form  
ψ୪~sin(kr − lπ 2⁄ + δ୪) at large distances[12]. 
It should be noted that the centrifugal term appears with coefficient 
(l + 1 2⁄ )ଶ	instead of the usual l(l + 1) and k is related to the energy E 
by	൫2mE ћଶ⁄ ൯. 
There are three ways to evaluate the phase shifts and may be calculated 
from exact solution, WKB(Wentzel–Kramers – Brillouin)  
approximation and perturbation theory. Here we focus on the semi – 
classical or WKB approximation[13,14], according to which  

δ୪ = ∫ dr ൤kଶ −
ቀ୪ାభమቁ

మ

୰మ
− ଶ୫୚(୰)

ħమ
൨
భ
మ

୰
୰భ

− ∫ dr ൤kଶ −
ቀ୪ାభమቁ

మ

୰మ
൨
భ
మ

୰
୰బ

               (7) 

r଴ =
୪ାభమ
୩

 is the classical turning point. In atomic unit a. u.(e = m =
ħ =1) 
We use Newton – Raphson method to find  rଵ which is defined by 

k୪
ଶ(r) = kଶ −

ቀ୪ାభమቁ
మ

୰మ
+ ଶ୞భୣష౨ ౗⁄

୰
                                        (8) 

at r = rଵ   ;   k୪
ଶ(r) = 0  therefore,  
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at r → ∞  ;     f(∞) ≈ kଶ    ;           f ′ ≈ 0 
Integration goes over the intervals where the radicands are positive. The 
Yukawa potential which is given by the equation  
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V(r) = − ୞భୣమ

୰
eି୰ ୟ⁄                                                               (12) 

has been found to be a useful model potential, in particular for swift 
ions where's Bohr adiabatic radius[15] 
aୟୢ =

୴
ன

                                                                             (13) 
may be chosen[16,17] as the screening radius a. Here ω is a 
characteristic resonance frequency of a target atom or, if the stopping 
medium is an electron gas, the plasma frequency. 
Where; l is the angular momentum, r is the distance, a is the screening 
radius,  k is the wave vector, and Zଵis the atomic number of projectile. 
     Figures(1, 2) show the results of phase shift which are calculated 
from eq.(7) as a function of angular momentum (l) at wave vector k=1, 
2 and screening radius a=1 for (a) positive particle and (b) negative 
particle with atomic number (Z1=1, 2, 3, 5, 10, 20). From the figure, the 
phase shift increases with increasing the atomic number Zଵ for both 
positive and negative projectile charge. At l =0 the phase shifts of 
positive and negative particle are agreement, but l ≥ 1 the discrepancies 
in phase shift are observed. The phase shift deceases with increasing the 
angular momentum	l because the phase shift is dependent on the density 
of electrons n and inversely proportional with it therefore the phase shift 
at l=0 has the maximum values and begins to decrease when the angular 
momentum l increases. At low l, the difference in  phase shift is 
apparent but at high l the values of phase shift are approaching and the 
difference becomes very small. For negative particle there is an 
inversion in phase shift at 1	≤ l ≤ 2 , while there is no effect at 	l > 2. 
       Figure(3) shows the results of phase shift which are calculated from 
eq.(7) as a function of angular momentum l at wave vector k=2 and 
screening radius a=2 for (a) particle of positive and negative 
charge(Z1=+5,-5) and (b) particle of positive and negative 
charge(Z1=+10,-10). From the figure, the semi – classical and WKB 
approximation distinguish between positive and negative projectile 
charge because there is a difference in phase shift between positive and 
negative particles and the phase shift of positive particle is larger than 
that of negative particle especially at low values of angular momentum	l 
but at high values of l, the difference becomes small and the values of 
phase shift are approaching. 
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     Figures(4, 5) show the results of phase shift which are calculated 
from eq.(7) as a function of wave vector k at screening radius a=1 for 
(a)positive particle with atomic number (Z1=+5, +10) and (b)negative 
particle with atomic number(Z1= -5, -10). From the figure, the increase 
of wave vector k led to a strong increase in phase shift for each value of 
angular momentum l. In both positive and negative particle and at the 
angular momentum l=0, the phase shifts are agreement but at l ≥1 the 
phase shift increases with increasing the wave vector k and the phase 
shift of positive particle is larger than that of a negative particle. The 
phase shift decreases with increasing the angular momentum l therefore 
it has the maximum values at l=0 and begins to decrease with increasing 
the 
 angular momentum l. 
 

Figure-1-a: Phase Shift for Yukawa Potential with k=1 and a=1 in Atomic Unit and 
Positive Particle with Atomic Number (Z1=1, 2, 3, 5, 10, 20) 
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Figure-1-b: Phase Shift for Yukawa Potential with k=1 and a=1 in Atomic Unit and 
Negative Particle with Atomic Number (Z1= 1, 2, 3, 5, 10, 20) 
 

Figure-2-a: Phase Shift for Yukawa Potential with k=2 and a=1 Atomic Unit and 
Positive Particle with Atomic Number (Z1= 1, 2, 3, 5, 10, 20) 
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Figure-2-b: Phase Shift for Yukawa Potential with k=2 and a=1 in Atomic Unit and 
Negative Particle with Atomic Number (Z1= 1, 2, 3, 5, 10, 20) 
 

Figure-3-a: Phase Shift for Yukawa Potential with k=2 and a=2 in Atomic Unit for 
Positive and Negative Particle with Atomic Number (Z1= +5, -5) 
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Figure-3-b: Phase Shift Yukawa Potential with k=2 and a=2 Atomic Unit for 
Positive and Negative Particle with Atomic Number (Z1= +10, -10) 
 

Figure-4-a: Phase Shift for Yukawa Potential with a=1 in Atomic Unit and Positive 
Particle with Atomic Number (Z1= +5) 
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Figure-4-b: Phase Shift for Yukawa Potential with a=1 in Atomic Unit and Negative 
Particle with Atomic Number (Z1=-5) 
 

Figure-5-a: Phase Shift for Yukawa Potential with a=1 Atomic Unit and Positive 
Particle with Atomic Number (Z1=+10) 
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Figure-5-b: Phase Shift for Yukawa Potential with a=1 in Atomic Unit and Negative 
Particle with Atomic Number (z1=-10) 
 
3. CONCLUSIONS 
     WKB method is one of the most useful approximations for 
computing the energy eign values and phase shift of the Schrodinger 
equation. It is important both as a practical means of approximating 
solutions to the Schrodinger equation, and also as a conceptual 
framework for understanding the classical limit of quantum mechanics. 
     Schrodinger equation has analytic solutions only for few selected 
potential energies. If the potential energy does not have a very simple 
form, the solution of it is generally a complicated problem. Some 
approximate methods to solve the Schrodinger equation are the 
perturbation method, the variational method and WKB approximation 
of great versatility which provides approximate wave function in one 
and three dimensional problems is a semi classical calculation in 
quantum mechanics in which the wave function is assumed an 
exponential function with amplitude λ and phase shifts δ that slowly 
varies compared to de Broglie wave length. The phase shift at a turning 
point has been found in the framework of the WKB method.  
     The phase shifts which are calculated from WKB method is 
dependent on the atomic number(Zଵ) and any increase in atomic 
number causes a strong increase in phase shift therefore the phase shift 
of positive charge is larger than that of the equivalent atomic number of 
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negative charge. As a result, the phase shift gets larger with increasing 
(Zଵ) and may in effect turn negative. The phase shift is parallely 
proportional with the wave vector(k) and it increases with increasing the 
wave vector and this is clear mathematically from the eq.(7) 
      The relative magnitude of phase shifts which are calculated from 
WKB approximation at constant atomic number and wave vector 
increases with decreasing the angular momentum l. WKB method 
distinguishes between positive and negative projectile charge at small 
values of l because the phase shift is large but at high values of l the 
phase shifts are approaching and become very small and at this region 
the perturbation method is found to be applicable.  
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